
1

Oracle 12.2 New features
Multi-Tenancy

23rd	of	October 2017

Martin	Jensen	- Nordea

Agenda
• Overview

• Naming Standard

• Create Pluggable database / Cloning

• Create / start services for specific PDBs

• Backup / Restore

• Pluggable Database Flashback

• DataGuard setup

• Resource Profiles

• Security

• MAX_STRING_SIZE = STANDARD

• More Database Parameters

• AWR for individual Pluggable Databases

Overview
Oracle 12.2 have removed most restrictions from 12.1 for Multi-Tenancy, so now is the time
where Nordea can fully utillize this new feature area, where Nordea currently holds an ULA
license.

Basically a few large rac-enabled container databases are being populated with a number of
pluggable databases.

Naming Standard
Container databases are typical referring to an SLA (Business criticality) as well as the category

and site:

Physical_container_name ::=
‘C’<business_criticality><sequence><category><standby_no><site>

Business_criticality ::= ‘B’ | ‘H’ | ‘S’ – for BCA, HA or Standard

Sequence ::= nnn – a 3 digit number

Category ::= ‘S’ | ‘T’ | ‘D’ | ‘P’ – Sandbox, Test, Demo or Production

Standby_no := n – a one digit number (not 0) to allow more standby databases.

Site ::= ‘C’ | ‘H’ | ‘O’ – CB, HH or OE

As an example CH003T2H is a container database covering HA test databases in HH, and has
the number 003.

Naming Standard cont.
A pluggable database name is more like a logical construction which is the same on different

cluster databases in a standby environment. As a convenient step, the category of the
database is maintained at the pluggable database level even though it is actually also
inherited from the container level. Because we cannot use the pluggable database name as
a service for the application, we have some freedom naming the actual pluggable database.

Pluggable_name ::= ‘P’<logical_database_name><clone_no><category>

Clone_no ::= nn – a two digit clone number of a pluggable – the first has the number ‘01’

As an example PALFA01S is a Pluggable sandbox database from the logical ALFA application
system, and it’s the first one.

Apart from the default service (equal to the pluggable_name) at least two dedicated services are
created:

Application_service ::= <logical_database_name> -- used in TNS for applications accessing this
database

Read_only_service ::= <logical_database_name>’_ro’

Create Pluggable Database / Cloning
A pluggable database may be created in a number of different ways

• Creating a new Pluggable database

• Through a PLUGIN – potentially following a PLUGOUT

• Copy a Pluggable database / Clone

• Refresh a PDB Clone

• Relocate a PDB from one container to another

• Create a thin Snapshot Clone of a PDB

2

Create Pluggable Database / Cloning
Creating a new Pluggable database

Fron the root of a container database (CDB$ROOT) it is possiblle to create a new pluggable
database, internally using the SEED database as the template:

CREATE PLUGGABLE DATABASE <pdb_name>
ADMIN USER <pdb_admin_name> IDENTIFIED BY <passwd> ROLES=(CONNECT);

ALTER PLUGGABLE DATABASE <pdb_name> OPEN INSTANCES = ALL;

ALTER SESSION SET CONTAINER = <pdb_name>;

GRANT CONNECT, RESOURCE, DBA TO <pdb_admin_name>;

In Nordea the <pdb_admin_name> account name is chosen to be ‘PDB_ADMIN’ with connect,
resource, dba roles.

Create Pluggable Database / Cloning
Through a PLUGIN – potentially following a PLUGOUT

ALTER PLUGGABLE DATABASE <pluggable_database_name> CLOSE immediate instances =
all;

ALTER PLUGGABLE DATABASE <pluggable_database_name> UNPLUG INTO
'<pdb_name>.xml';

-- located in $ORACLE_HOME/dbs/<pdb_name>.xml

Now, let’s drop the database (but keep the datafiles), and plugin the pdb into the same container
again. After having validated that we are all green.

drop pluggable database <pdb_name> KEEP DATAFILES;

Create Pluggable Database / Cloning
Through a PLUGIN – potentially following a PLUGOUT – Check if the plugged out database may
be plugged in:

set serveroutput on
DECLARE
compat BOOLEAN := FALSE;

BEGIN
compat := DBMS_PDB.CHECK_PLUG_COMPATIBILITY(
pdb_descr_file =>'<pdb_name>.xml',
pdb_name => '<pdb_name>');

if compat then
DBMS_OUTPUT.PUT_LINE('Is pluggable compatible? YES');
else DBMS_OUTPUT.PUT_LINE('Is pluggable compatible? NO');

end if;
end;
/

Is pluggable compatible? YES

Create Pluggable Database / Cloning
Through a PLUGIN – potentially following a PLUGOUT – Plug in:

Potential violations may be found here in the pdb_plug_in_violations view. If no violations are
found the database may be plugged in and the related service started:

select message, action from pdb_plug_in_violations
where name='<pdb_name>'
order by message;

create pluggable database <pdb_name> using <pdb_name>.xml' NOCOPY;

srvctl start service -service <pdb_service_name> -db <container_database_name>

When a pluggable database is first created it is in MOUNTED mode before it is opened. Please
consider to adjust some of the database parameters before the pluggable database is
opened, such as setting open_links to 0 in order to control if any local materialized views
should register remote materialize view logs

Alter system set open_links=0 scope=spfile sid=’*’;

Create Pluggable Database / Cloning
Copy a Pluggable database from one container database to another.

Version 12.2 does allow a clone of a pluggable database to be created from one container
database to another (with some restrictions) even as the source pluggable database is in READ
WRITE mode and being used. The create pluggable database will (when it’s opened) have a
consistent content from the source pluggable from when all the data have been copied over to
the new pluggable.

CREATE USER c##remote_clone_user IDENTIFIED BY <passwd> CONTAINER=ALL;

GRANT CREATE SESSION, CREATE, SYSOPER PLUGGABLE DATABASE TO
c##remote_clone_user CONTAINER=ALL;

Create a database link in the target_cdb container pointing to the source_cdb, and test the link.
Note that there seems to be an issue using the scan listener in this database link, which is
why the VIP address is used (SR 3-15433875101: PDB Hot Clone fails with TNS error).

CREATE DATABASE LINK clone_link CONNECT TO c##remote_clone_user IDENTIFIED BY
<passwd> USING
'(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=<host>-
vip.oneadr.net)(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME=<source_cdb>.oneadr.ne
t)))';

Create Pluggable Database / Cloning
Copy a Pluggable database from one container database to another – do the copy

Create the target_pdb as a clone of the source_pdb, without having to switch the source_pdb
into READ ONLY mode, and take advantage of our usage on Oracle Managed Files (OMF).

CREATE PLUGGABLE DATABASE <target_pdb> FROM <source_pdb>@clone_link;

ALTER PLUGGABLE DATABASE <target_pdb> OPEN INSTANCES = (<list of instances>);

Check for possible errors:

select *
from PDB_PLUG_IN_VIOLATIONS
where name = '<target_pdb>'
order by time;

There will probably be some “Database option <option> mismatch: PDB installed version
12.2.0.1.0. CDB installed version NULL” errors, which may be ignored due to the following
MOS: "OPTION WARNING Database option mismatch: PDB installed version NULL" in
PDB_PLUG_IN_VIOLATIONS (Doc ID 2020172.1)

3

Create Pluggable Database / Cloning
Refresh a PDB Clone

It is possible to create the clone of a pdb, and then at a later stage refresh the clone to get the
latest content of the source pluggable database pushed to the clone. The procedure is very
similar with normal cloning.

CREATE PLUGGABLE DATABASE <target_pdb> FROM <source_pdb>@clone_link REFRESH
MODE MANUAL;

This may be a lengthy operation as large volumes of data would potentially need to be copied
from one cluster to another. On the positive side however, the source pdb is still servicing
the applications. So after the initial cloning has finished, it may be preferable to do a refresh
to know more about the actual content in the cloned database.

ALTER SESSION SET CONTAINER = <target_pdb>;

ALTER PLUGGABLE DATABASE <target_pdb> REFRESH;

Before the new clone can be opened it need to be disconnected from the refresh mode:

ALTER PLUGGABLE DATABASE <target_pdb> REFRESH MODE NONE;

ALTER SESSION SET CONTAINER = CDB$ROOT;

ALTER PLUGGABLE DATABASE <target_pdb> OPEN INSTANCES = (<list of instances>);

Create Pluggable Database / Cloning
Relocate a PDB from one container to another

It is possible to combine the previous hot clone mechanism to actually move a pluggable
database from one container database to a different one, even in different clusters using the
same kind of database link (clone_link) as used before:

CREATE PLUGGABLE DATABASE <target_pdb> FROM <source_pdb>@clone_link RELOCATE;

This will leave the <target_pdb> in the RELOCATING state, with all content from the
<source_pdb> from the time the relocate operation ends. In order to open the relocated pdb,
transfer the last minute changes and drop the old pdb, we need to execute the open request:

ALTER PLUGGABLE DATABASE <target_pdb> OPEN INSTANCES = (<list of instances>);

Create Pluggable Database / Cloning
Create a thin Snapshot Clone of a PDB

It is possible to create pdb clones as thin (storage wise) pluggable databases, where the cloned
pdb literally only have very little storage claims in the beginning of its life. As the original
and the cloned pdb evolves over time, the storage claim of the cloned pdb will increase.

CREATE PLUGGABLE DATABASE <pdb_clone_name> FROM <pdb_name> SNAPSHOT COPY;

It is however required to use the so called ‘sparse disk group’ to have this working.

TBD

Create / start services for specific PDBs
In order to avoid connection errors (ORA-01033: ORACLE initialization or shutdown in progress)

when connecting to a pdb in a RAC, where some of the instances is up and some is only
MOUNTED, we need to create explicit services for each PDB, see MOS 1998112.1:
Connecting To a 12c RAC Pluggable Database Intermittently Fails With ORA-1033".

srvctl add service -service <explicit_service_name> -db <container_db_name> -role primary -
pdb <pdb_name> -preferred "<list of cluster db instances>"

srvctl start service -service <explicit_service_name> -db <container_db_name>

srvctl status service -service <explicit_service_name> -db <container_db_name> -v

srvctl config service -service <explicit_service_name> -db <container_db_name> -v

add entry to tnsnames.ora using the explicitely create service name

Backup / Restore
The strategy is to continue to run the Nordea backup procedures at the (container) database

level using RMAN, and then to restore pluggable databases (if need be) from the container
database backup. This way a new pluggable in a container database will automatically
inherit the backup characteristics. And a pluggable database may be restored without
disturbing other pluggable databases in the same container database.

Actually a full container database backup will group tablespaces from the same PDB into the
same backup pieces in order to make a pdb restore faster. Newly created pluggable
databases will have their first backup at the following incremental level 1 backup.
Archivelog backups will not cover these newly created PDBs.

The general backup procedure remains at the container database level, where backups are
taken locally on the site where the physical database is located:

• Incremental level 0 backup once every weekend

• Incremental level 1 backup once every day

• Archivelog backup every hour (or second hour)

• Block-change-tracking enabled

• RMAN compression in use

Pluggable Database Flashback
From version 12.2 restore points may be used at the pluggable database level.

CREATE RESTORE POINT <restore_point_name>;

< do some work >

As we want to keep the pluggable instances exactly at the same positions and state as before a
close, the following save state the following statement should be considered.

ALTER PLUGGABLE DATABASE <pdb_name> SAVE STATE;

Closing a PDB with non-default services may hang on oracle process connections

srvctl stop service -db <container_database_name> -service <pdb_service_name> -f

ALTER PLUGGABLE DATABASE <pdb_name> CLOSE IMMEDIATE INSTANCES = ALL;

FLASHBACK PLUGGABLE DATABASE <pdb_name>TO RESTORE POINT
<restore_point_name>;

ALTER PLUGGABLE DATABASE <pdb_name> OPEN RESETLOGS;

srvctl start service -db <container_database_name> -service <pdb_service_name>

4

DataGuard setup
At the Container database level force logging must be enabled. This setting is automatically

inherited to all the pluggable databases in that container, and cannot be overwritten at the
pluggable level.

Two special init.ora parameters are useful when pdbs are cloned or relocated into a container
with standby: standby_pdb_source_file_dblink and standby_pdb_source_file_directory

TBE

Resource Profiles
We define 4 different resource profiles in order to span PDBs from the very large (one pdb in the
cdb) to the relatively small where one Container database instance may hold 64 PDBs in total.
And we think 4 different resource profiles are manageable:

SGA_MIN_SIZE must be equal or less than half the SGA_TARGET.

Due to Bug 26160154 the usage of the SGA for a pdb may be bigger that the SGA_TARGET for
that pdb.

PGA_AGGREGATE_TARGET is 3 times lower than PGA_AGGREGATE_LIMIT

Resourc
e Profile

SGA
Target

SGA Min
size

PGA
Target

PGA
Limit

Cpu
Count

Max pdbs
per cdb
inst

rp1 1162M 581M 150M 450M 1 64
rp2 4650M 2325M 602M 1806M 2 16
rp3 18600M 9300M 2411M 7233M 4 4
rp4 74401M 37200M 9644M 28932M 14 1

Resource Profiles cont.
It is possible to limit the IOPS and Megabytes per second for each of the PDBs – obviously we

need to test and verify which limit values are reasonable in order to utilize the underlying IO
capacity the best, to be balanced with reasonable isolation between PDBs. Here is the initial
settings:

Resource
Profile

MAX_IOP
S

MAX_MBPS

rp1 6500 70
rp2 25000 280
rp3 100000 1120
rp4 400000 4500

Resource Profiles cont.
It is recommended to create each pluggable database with a reasonable maximum size, and

then to allow for extensions when extra storage capacity is needed and acknowledged.

When needed (possibly after an “ORA-65114: space usage in container is too high” error), this
size may be increased like this from the actual pluggable database:

ALTER PLUGGABLE DATABASE <pdb_name> STORAGE (MAXSIZE <size>);

Similar settings may protect the local filesystems, covering audit and diag areas, using
MAX_AUDIT_SIZE and MAX_DIAG_SIZE

Resource
Profile

MAXSIZE in
G

MAX_SHARED_TEMP_SIZE
in G

rp1 100 5
rp2 500 25
rp3 1000 50
rp4 5000 250

Security
Audit settings

Each pdb will inherit the basic security settings from the container-database (audit_trail which is
set to XML, EXTENDED) – refer to the Oracle database audit log management document.

User accounts and Roles

It is possible to create container database wide user accounts and roles. Such phenomena need
to be prefixed with ‘C##’ (default of the COMMON_USER_PREFIX parameter). Such common
user accounts are immediately available in existing (and coming pluggable databases) in the
container database and in the different pluggable databases. Such users may get different
default tablespaces and other preferences.

Database Profiles

Besides the existing database profiles delivered from Oracle (DEFAULT and
ORA_STIG_PROFILE) , we have in Nordea the TECHNICAL_USER_PROFILE and the
PERSONAL_USER_PROFILE database profiles now called C##TECHNICAL_USER_PROFILE
and the C##PERSONAL_USER_PROFILE at the Root container level.

From the single-tenant databases we are used to have these database profiles using the
NORDEA_VERIFY_FUNCTION password validation function, which is now available at the
root container level as well.

Security – cont.
Consider the new lockdown profile from 12.2 to increase stability. Such a lockdown profile will

limit the available features on some of the pluggable databases in the container database.

CREATE LOCKDOWN PROFILE ndld_profile;

ALTER LOCKDOWN PROFILE ndld_profile DISABLE FEATURE =
('EXTERNAL_FILE_ACCESS','JAVA_OS_ACCESS','LOB_FILE_ACCESS');

ALTER LOCKDOWN PROFILE ndld_profile DISABLE STATEMENT = ('alter database');

ALTER SESSION SET CONTAINER = <pdb_name>;

ALTER SYSTEM SET PDB_LOCKDOWN = ndld_profile;

5

MAX_STRING_SIZE = STANDARD
From 12.1 it is possible to extend the limit for VARCHAR2 columns from 4000 to 32k bytes. This
is done by changing the MAX_STRING_SIZE from STANDARD to EXTENDED.

Setting the MAX_STRING_SIZE to extended in a pluggable database in a RAC environment is
not straight forward. One would need to follow note “How to Increase the Maximum Size of
VARCHAR2, NVARCHAR2, and RAW Columns in 12C Database using MAX_STRING_SIZE? (Doc
ID 1570297.1)” and disable the cluster_database to false for the cluster database during the
upgrade on the pluggable database.

It is recommended to keep the default (STANDARD) for this parameter.

More Database Parameters
In order to offer maximum isolation between pluggable databases in the same container

database, and to support restore points at the pdb level, each of the pluggable database
should use LOCAL UNDO. LOCAL UNDO is OFF as default in version 12.2. This is also a
prerequisite for hot cloning and relocation.

ALTER DATABASE LOCAL UNDO ON;
select * from database_properties
where property_name = 'LOCAL_UNDO_ENABLED';

The clause “close instance all” does not work (Doc ID 2062080.1) as this feature does require
PARALLEL_FORCE_LOCAL=FALSE, which we do not want in general for other reasons. So
for the container database we set PARALLEL_FORCE_LOCAL=FALSE, and TRUE for
pluggable databases.

ENABLED_PDBS_ON_STANDBY Should be set to "*" to cover that all PDBs in a container
database should be covered by Dataguard.

Using Bigfile as Default

ALTER PLUGGABLE DATABASE <pdb_name> SET DEFAULT BIGFILE TABLESPACE;

AWR for individual Pluggable Databases
It is possible to have snaps generated at the Pluggable database level in order to offer AWRs at
the container as well as the pluggable database.

AWR_PDB_AUTOFLUSH_ENABLED changed from default FALSE to TRUE, at the container
level in order to support automatic AWRs per pdb. It is also possible to set this parameter at the
pdb level in order to select specific pdbs for AWR support.

AWR_SNAPSHOT_TIME_OFFSET change from 0 to 1000000 at the container level. Setting this
parameter to 1000000 helps to create AWR snapshots with different offset based on database
names and avoids CPU spike in the system.

Also on the pluggable database the following workload repository setting need to be applied in
order to automate the snap generation each hour.

BEGIN
DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS (
retention => 11520 -- 8 days,

-- setting this value to 0 will disable the snap creation at the pdb level
, interval => 60 -- one hour
, topnsql => 'DEFAULT'
, dbid => <dbid for the pdb>
);

END;
/

Be careful out there,

Oracle SME’s @nordea.com

