The basics of Machine Learning

Heli Helskyaho Nordic ACE Tour 2017

Introduction, Heli

- * Graduated from University of Helsinki (Master of Science, computer science), currently a doctoral student, researcher and lecturer (databases, Big Data, Multi-model Databases, methods and tools for utilizing semi-structured data for decision making) at University of Helsinki
- Worked with Oracle products since 1993, worked for IT since 1990
- * Data and Database!
- * CEO for Miracle Finland Oy
- * Oracle ACE Director
- Ambassador for EOUC (EMEA Oracle Users Group Community)
- Public speaker and an author
- * Winner of Devvy for Database Design Category, 2015
- * Author of the book Oracle SQL Developer Data Modeler for Database Design Mastery (Oracle Press, 2015), co-author for Real World SQL and PL/SQL: Advice from the Experts (Oracle Press, 2016)

Oracle SQL Developer Data Modeler for Database Design Mastery

Design, Deploy, and Maintain World-Class Databases on Any Platform

Heli Helskyaho Gracie ACE Director

Forewords by C.J. Date and Tom Kyte

Real World SQL & PL/SQL

Advice from the Experts

Arup Nanda Brendan Tierney Heli Helskyaho Martin Widlake Alex Nuijten

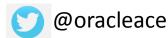
500+ Technical Experts Helping Peers Globally

3 Membership Tiers

- Oracle ACE Director
- Oracle ACE
- Oracle ACF Associate

bit.ly/OracleACEProgram

Connect:



What is Machine Learning?

- * An important part of Artificial Intelligence (AI)
- * Machine learning (ML) teaches computers to learn from experience (algorithms)
 - Learn from data and make predictions
 - * Mathematics, statistics,...
- * "field of study that gives computers the ability to learn without being explicitly programmed"
- -- Arthur Samuel, 1959
- * A systematic study of algorithms and systems that improve their knowledge or performance with experience

Why ML? Why now?

- * Improved technology
- * The price for storage solutions
- * ...
- * An environment that NEEDS ML and is finally able to really use it
- * Artificial Intelligence (AI)
- * BIG DATA

What is Big Data?

- * There is no size that makes a data to be "Big Data", it always depends on the capabilities
- * The data is "Big" when traditional processing with traditional tools is not possible due to the amount or the complexity of the data
 - * You cannot open an attachement in email
 - * You cannot edit a photo
 - * etc.

The three V's

- * Volume, the size/scale of the data
- * Velocity, the speed of change, analysis of streaming data
- * Variety, different formats of data sources, different forms of data; structured, semi-structured, unstructured

The other V's

- * Veracity, the uncertainty of the data, the data is worthless or harmful if it's not accurate
- * Viability, validate that hypothesis before taking further action (and, in the process of determining the viability of a variable, we can expand our view to determine other variables)
- * Value, the potential value
- * Variability, refers to data whose meaning is constantly changing, in consistency of data; for example words and context
- Visualization, a way of presenting the data in a manner that's readable and accessible

Challenges in Big Data

- More and more data (volume)
- * Different data models and formats (variety)
- * Loading in progress while data exploration going on (velocity)
- * Not all data is reliable (veracity)
- * We do not know what we are looking for (value, viability, variability)
- * Must support also non-technical users (journalists, investors, politicians,...) (visualization)
- * All must be done efficiently and fast and as much as possibly by machines

When to use ML?

- * You have data!
 - * ML cannot be performed without data
 - * part of the data for finding the model, part to prove it (not all for finding the model!)
- * Rules and equations are
 - * Complex (image recognition)
 - * Constantly changing (fraud detection)
- * The nature of the data changes and the program must adapt (today's spam is tomorrow's ham) (predicting shopping trends)

Real life use cases for ML

- * Spam filters
- * Log filters (and alarms)
- * Data analytics
- * Image recognition
- * Speech recognition
- * Medical diagnosis
- * Robotics
- *

Approximation!

- * ML always gives an approximated answer
- * Some are better than others, some are useful
- * search for patterns and trends
- * Prediction accuracy: the higher the number the better it will work on new data
- * several models, choose the best, but still: all approximations! There is no correct answer...

What do I find the most difficult for a beginner?

* The terms!

- * So many different terms
- * The same term meaning different things, two (or more) terms for the same thing (sometimes a completely different word, sometimes just a short of the original word)
- * The relationships the terms have

Terms used 1/5

- * A Task
 - * The problem to be solved with ML
- * An Algorithm
 - * the "experience" for the computer to learn with, solves the learning problem
 - * Produces the Models

Terms used 2/5

- * A Model
 - * The output of ML
 - * The Task is Addressed by Models

Terms used 3/5

* Different Models:

- * Predictive model
 - * the model output involves the target variable
 - * "forecast what might happen in the future"
- Descriptive model
 - * the model output does not involve the target variable
 - * "what happened"
- Prescriptive model
 - * recommending one or more courses of action and showing the likely outcome of each decision
 - * A predictive model + actionable data and a feedback system to track the outcome

Terms used 4/5

- * Different models based on the algorithm type:
 - * Classification Models
 - * Concept learning Models
 - * Tree Models
 - * Rule Models
 - * Linear Models
 - * Distance-based Models
 - * Probabilistic Models

Terms used 5/5

* Features/Dimensions

- * an individual measurable property or characteristic of a phenomenon being observed (Bishop, Christopher (2006), Pattern recognition and machine learning)
- * Deriving features (feature engineering, feature extraction) is one of the most important parts of machine learning. It turns data into information that a machine learning algorithm can use.

* Methods/Techniques

- * Unsupervised learning
- Supervised learning

The Task

- * It is very important to define the Task well
- * Machine learning is not only a computational subject, the practical side is very important

It's all about Algorithms

- * Humans learn with experience, machines learn with algorithms
- * It is not easy to find the right Algorithm for the Task
 - * usually try with several algorithms to find the best one
 - * selecting an algorithm is a process of trial and error

Which algorithm?

- * The selection of an algorithm depends on for instance
 - * the size and type of data
 - the insights you want to get from the data
 - * how those insights will be used
- * It's a trade-off between many things
 - * Predictive accuracy on new data
 - Speed of training
 - * Memory usage
 - Transparency (black box vs "clear-box", how decisions are made)
 - * Interpretability (the ability of a human to understand the model)
 - *

Models 1/2

- * Geometric models
 - * Support vector machines, SVM
 - * Notion of distance: Euclidean distance, nearest-neighbour classifier, Manhattan distance
- * Probabilistic models
 - Bayesian classifier
- * Logical models
 - * Decision trees

Models 2/2

- * Grouping models, number of groups determined at the training time
 - * Tree based models
- * Grading models, "infinite" resolution
 - * Geometric classifiers
- *

Features

- * A Model is only as good as its Features...
- * Interaction between features
- * The unnecessary detail can be removed by discretisation (11,1kg vs 10kg)

ML in short

- * Use the right Features
 - * with right Algorithms
 - * to build the right *Models*
 - * that archive the right *Tasks*

Two types of Methods

- * Unsupervised learning
 - * finds hidden patterns or intrinsic structures in input data
- Supervised learning
 - * trains a model on known input and output data to predict future outputs

Unsupervised Learning

- Learning from unlabeled input data by finding hidden patterns or intrinsic structures in that data
- Machine learning algorithms find natural patterns in data to make better decisions and predictions possible
- * used typically when you
 - * don't have a specific goal
 - * are not sure what information the data contains
 - want to reduce the features of your data as a preprocessing for supervised learning

Clustering

- * Clustering is the most common method for unsupervised learning and used for exploratory data analysis to find hidden patterns or groupings in data.
- * Clustering algorithms
 - * Hard clustering
 - * each data point belongs to only one cluster
 - Soft clustering
 - * each data point can belong to more than one cluster

Hard clustering algorithms

* each data point belongs to only one cluster

Some Hard Clustering Algorithms 1/2

* K-Means (Lloyd's algorithm)

- * Partitions data into k number of mutually exclusive clusters (centroids)
- * Assign each observation to the closest cluster
- * Move the centroids to the true mean of its observations
- * When to use:
 - * When the number of clusters is known
 - * Fast clustering of large data sets

* K-Medoids

- * Similar to k-means, but with the requirement that the cluster centers coincide with points in the data (chooses datapoints as centers, medoids).
- * Can be more robust to noise and outliers than K-Means
- * When to use:
 - * When the number of clusters is known
 - * Fast clustering of categorical data

Some Hard Clustering, Algorithms 2/2

Hierarchical Clustering

- * Divisive method, assign all observation to one cluster and the partition that cluster
- * Agglomerative method, each observation to its own cluster and merge those clusters
- * When to use:
 - * When you don't know in advance how many clusters
 - * You want visualization to guide your selection

Soft clustering algorithms

* each data point can belong to more than one cluster

Some Soft clustering algorithms

* Fuzzy C-Means (FCM)

- * Similar to k-means, but data points may belong to more than one cluster.
- * When to use:
 - * The number of clusters is known
 - * When clusters overlap
 - * Typically for pattern recognition

* Gaussian Mixture Model

- * Partition-based clustering where data points come from different multivariate normal distributions with certain probabilities. (example: Prices for a house in different area)
- * When to use:
 - * Data point might belong to more than one cluster
 - * Clusters have different sizes and correlation structures within them

Supervised Learning

- * Learning from known, labelled data
- * Training a model on known input and output data to predict future outputs (remember that uncertainty is always involved)

A process of supervised learning 1/2

1. Train

- 1. Load data
- 2. Pre-process data
- 3. Learn using a method and an algorithm
- 4. Create a model
- * iterate until you find the best model

A process of supervised learning 2/2

- 2. Predict (use the model with new data)
 - New data
 - 2. Pre-process data
 - 3. Use the model
 - 4. Get predictions
 - 5. Integrate the models into applications

Supervised Learning, methods/techniques

- * Predictive models
 - * Classification
 - * Regression

Supervised Learning, Classification

- * Classification models are trained to classify data into categories.
- * They predict discrete responses
 - * an email is genuine or spam
 - * a tumor is small, medium size, or large
 - * a tumor is cancerous or benign
 - * a person is creditworthy or not
- * For example applications like medical imaging, speech recognition, and credit scoring

Supervised Learning, Classification

- * Can the data be tagged or categorized? Can it be separated into specific groups or classes?
 - * Classification might be the right answer
- * Is the problem binary or multiclass?
 - * Defines the number of classes.

* k Nearest Neighbor (kNN)

- * kNN categorizes objects based on the classes of their nearest neighbors all ready categorized
- * kNN predictions assume that objects near each other are similar
- * When to use:
 - * need a simple algorithm to establish benchmark learning rules
 - * memory usage of the trained model is a lesser concern (can be very memory consuming)
 - * prediction speed of the trained model is a lesser concern (can be slow if the amount of data is large or several dimensions are used)

* Naïve Bayes

- * assumes that the presence (or absence) of a particular feature of a class is unrelated to the presence (or absence) of any other feature when the class is defined
- * classifies new data based on the highest probability of its belonging to a particular class (a fruit is red -> an apple, a fruit is round -> an apple, together a stronger probability to be an apple)
- * When to use:
 - * For a dataset containing many parameters (dimensionality of the inputs is high)
 - * Simple to implement, easy to interpret

* Discriminant Analysis

- * The classes are known a prio, an observation is classified to into one class based on the measured characteristics.
 - * Example, bank notes:
 - * two populations of bank notes, genuine, and counterfeit
 - * Six measures: length, right-hand width, left-hand width, top margin, bottom margin, diagonal across the printed area
 - * Take a bank note of unknown origin and determine using these six measurements whether or not it is real or counterfeit.
- * When to use:
 - * need a simple model that is easy to interpret
 - memory usage during training is a concern
 - * need a model that is fast to predict

* Neural Network

- * Imitates how biological nervous systems, the brain, process information
- * A large number of highly interconnected processing elements (neurones) work together to solve specific problems
- * When to use:
 - * For modeling highly nonlinear systems
 - * When data is available incrementally and you wish to constantly update the model
 - * Unexpected changes in your input data may occur
 - * Model interpretability is not a key concern

* Decision Trees, Bagged and Boosted Decision Trees

- * A tree consists of branching conditions, predict responses to data by following the decisions in the tree from the root down to a leaf node
- * A bagged decision tree consists of several trees that are trained independently on data. Boosting involves reweighting of misclassified events and building a new tree with reweighted events.
- * When to use:
 - * Need an algorithm that is easy to interpret and fast to fit
 - * To minimize memory usage
 - * High predictive accuracy is not a requirement
 - * The time taken to train a model is less of a concern

Logistic Regression

- * Predict the probability of a binary response belonging to one class or the other
 - * For example how does hours spent studing affect the probability for a student to pass the exam (yes/no)
- * When to use:
 - * When data can be clearly separated by a single, linear boundary
 - * Logistic regression is commonly used as a starting point for binary classification problems
 - * As a baseline for evaluating more complex classification methods

Supervised Learning, Regression

- * To predict continuous responses
 - * changes in temperature
 - * fluctuations in electricity demand
- * For example applications like forecasting stock prices, handwriting recognition, acoustic signal processing, failure prediction in hardware, and electricity load forecasting.

* Linear Regression

- * used to describe a continuous response variable as a linear function of one or more predictor variables
- * When to use:
 - * need an algorithm that is easy to interpret and fast to fit, often the first model to be fitted to a new dataset
 - * As a baseline for evaluating other, more complex, regression models

* Nonlinear Regression

- * describe nonlinear relationships in experimental data
- * When to use:
 - * When data has nonlinear trends and cannot be easily transformed into a linear space
 - * For fitting custom models to data

* Generalized Linear Model (GLM)

- * A special case of nonlinear models that uses linear methods: it fits a linear combination of the inputs to a nonlinear function (the link function) of the outputs
- * When to use:
 - * When the response variables have non-normal distributions

- * Gaussian Process Regression Model (GPR)
 - * nonparametric models that are used for predicting the value of a continuous response variable
 - * When to use:
 - For interpolating spatial data
 - * As a surrogate model to facilitate optimization of complex designs such as automotive engines
 - * Can be used for example forecasting of mortality rates

* Regression Tree

- * Decision trees for regression are similar to decision trees for classification, but they are modified to be able to predict continuous responses
- * When to use:
 - * When predictors are categorical (discrete) or behave nonlinearly

Improving Models

* Why to improve

- * To increase the accuracy and predictive power of the model
- * To increase the ability to recognize data from noise
- * To increase the performance
- To improve the Measures wanted
- *

Improving Models

- * Model improvement involves
 - * Feature engineering
 - * Feature selection
 - * Feature transformation/extraction
 - * Hyperparameter tuning

Feature selection

- * Also called variable selection or attribute selection
 - * Identifying the most relevant features that provide the best predictive model for the data
 - * Adding variables to the model to improve the accuracy or removing variables that do not improve model performance

Feature selection techniques

* Stepwise regression:

adding or removing features sequentially until there is no improvement in prediction accuracy

* Sequential feature selection:

* adding or removing predictor variables iteratively and evaluating the effect of each change on the performance of the model

* Regularization:

* Using shrinkage estimators to remove redundant features by reducing their weights (coefficients) to zero

* Neighborhood component analysis (NCA):

 Finding the weight each feature has in predicting the output, so that features with lower weights can be discarded

Feature transformation

- * Feature transformation is a form of dimensionality reduction
- * Used when
 - * want to reduce the dimensions/features of your data as a preprocessing for supervised learning
 - * As datasets get bigger, you frequently need to reduce the number of features, or dimensionality.

Feature transformation

* Techniques:

- * Principal component analysis (PCA)
- * Factor analysis
- * Non-negative matrix factorization

Principal component analysis (PCA)

- * Converts a set of observations of possibly correlated variables into a smaller set of values of linearly uncorrelated variables called *principal* components
- * The first principal component will capture the most variance, followed by the second principal component, and so on.

Factor analysis

* identifies underlying correlations between variables in a dataset to provide a representation in terms of a smaller number of unobserved variables, factors

Non-negative matrix factorization (NNMF)

- * Also called non-negative matrix approximation
- * used when model elements must represent non-negative quantities, such as physical quantities

Hyperparameter tuning

- * Also called as Hyperparameter optimization
- * Choosing an optimal set of hyperparameters for a learning algorithm
 - * Hyperparameters are parameters whose values are set *prior* to the commencement of the learning process (the value of other parameters is derived via training)
 - * Hyperparameters control how a machine learning algorithm fits the model to the data.

Hyperparameter Tuning

- * Tuning is an iterative process
 - * Set parameters based on a best guess
 - Aim to find the best possible values to yield the best model
 - * As you adjust hyperparameters and the performance of the model begins to improve, you see which settings are effective and which still require tuning
- * Some examples of optimization algorithms:
 - * Grid search
 - * Bayesian optimization
 - Gradient-based optimization
 - * Random Search
- * A simple algorithm with well-tuned parameters is often better than an inadequately tuned complex algorithm, in many ways.

How do I know when to tune?

- * How does the model perform on the data?
- * Which of the models is the best?
- * Which of the learning algorithms gives the best model for the data?
- *
- * To be able to answer questions like these we need to have **measuring**

What to measure?

- * Number of positives, number of negatives, number of true positives, number of false positives, number of true negatives, number of false negatives
- * Portion of positives, portion of negatives
- * Class ratio
- * Accuracy, Error rate
- * ROC curve, coverage curve,
- *
- * It all depends on how we define the performance for the answer to our question (experiment): experimental objective

How to measure?

- * And how to interpret?
- * It all depends what we are measuring...
- * Example: Testing the model accuracy
 - * Tool: Cross validation

Cross validation

- * Sometimes called Rotation Estimation
- * Divide the data in n parts of equal size
- * Use n-1 parts for training and 1 for testing
- * Repeat n times so that each of the sets will be used for testing

What's next to learn?

- * There is still so much more about ML...
- Reinforcement learning
 - * the machine or software agent learns based on feedback from the environment
- Preference learning
 - * inducing predictive preference models from empirical data
- * Multi-task learning
 - * multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks
- Online machine learning
 - * data becomes available in a sequential order and is used to update our best predictor for future data at each step

What's next to learn?

- * Active learning
 - * A learning algorithm is able to interactively query the user (or some other information source) to obtain the desired outputs at new data points
- * Deep learning
 - * Images and anything that is in "several layers"
- * Adaptive Intelligence
 - * People and machines

Data Mining

* building machine learning models is an essential step in the data mining process

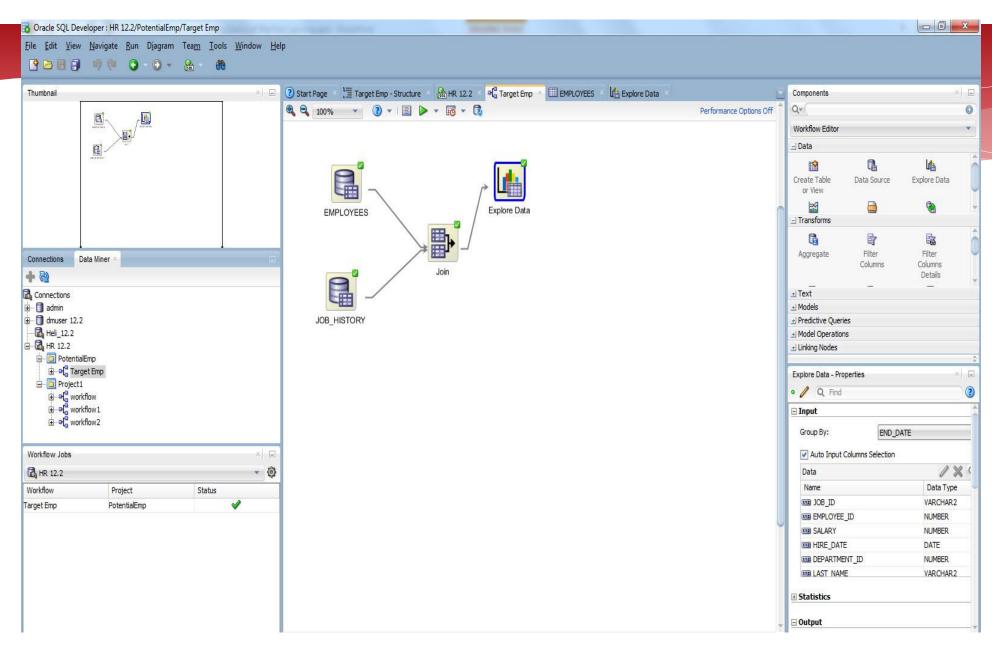
Oracle SQL Developer, Data Miner

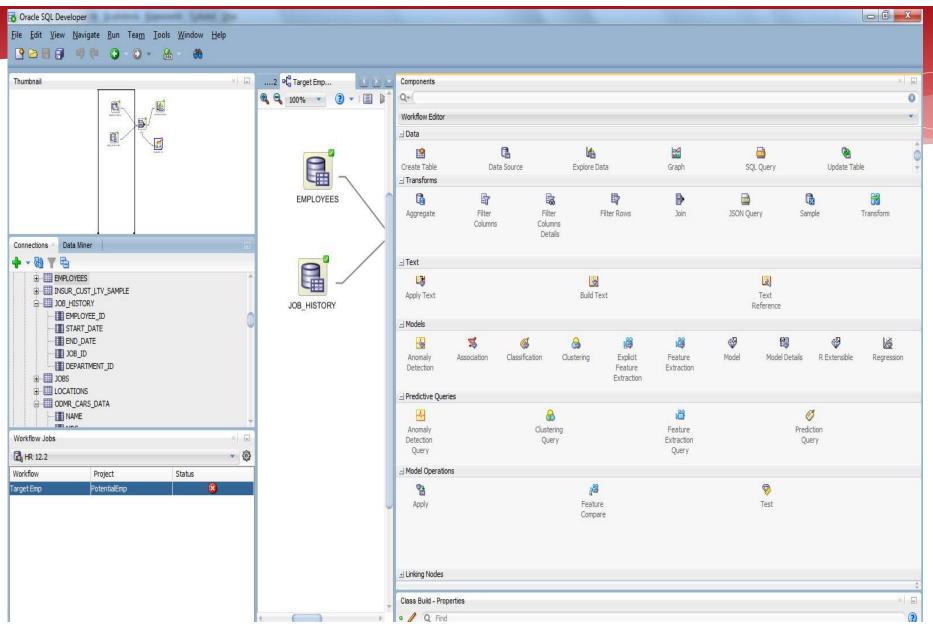
- * Oracle SQL Developer is a free tool from Oracle
- * Has an add-on called Data Miner
- * Oracle Data Miner GUI Installation Instructions

http://www.oracle.com/technetwork/database/options/advanced-analytics/odm/odmrinstallation-2080768.html

* Tutorial

http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/12c/BigDataDM/ODM12c-BDL4.html





Chapter 10

Real World SQL & PL/SQL

Advice from the Experts

Arup Nanda Brendan Tierney Heli Helskyaho Martin Widlake Alex Nuijten

Predictive Analytics Using

Oracle Data Miner

Develop & Use Data Mining Models in Oracle Data Miner, SQL & PL/SQL

Brendan Tierney Oracle ACE Director

Oracle R Enterprice

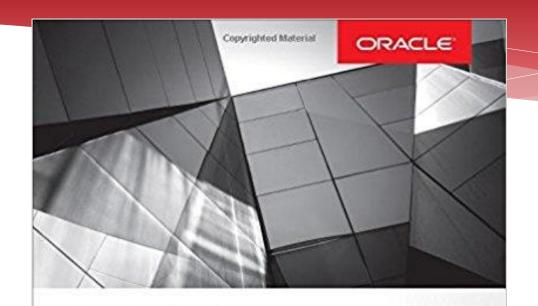
- a component of the Oracle Advanced Analytics Option (payable option)
- * open source R statistical programming language in an Oracle database

Chapter 11

Real World SQL & PL/SQL

Advice from the Experts

Arup Nanda Brendan Tierney Heli Helskyaho Martin Widlake Alex Nuijten



Oracle R Enterprise

Harnessing the Power of R in Oracle Database

Transform Your Organization's Big Data Into Valuable Assets

Brendan Tierney

Oracle ACE Director

Copyrighted Material

Predictive Queries in Oracle 12c

- * Predictive Queries enable you to build and score data quickly using the in-database data mining algorithms
- * Predictive Queries can be
 - built using Oracle Data Miner
 - * written using SQL

Chapter 12

Real World SQL & PL/SQL

Advice from the Experts

Arup Nanda Brendan Tierney Heli Helskyaho Martin Widlake Alex Nuijten

And so many more languages to learn...

- * Python
- ***** C/C++
- * Java
- * JavaScript
- * Julia, Scala, Ruby, Octave, MATLAB, SAS

* https://medium.com/towards-data-science/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7

The future and now!

- * Al and machine learning is here and it's the future
- * So many interesting areas to learn
- * Pick your area and START LEARNING!

* The time for Machine Learning is now because we technically able to use it and because of Big Data

- * Several V's related to Big Data...
 - * Volume
 - * Velocity
 - * Variety
 - * Veracity
 - * Viability
 - * Value
 - * Variability
 - * Visualization
 - *

- * ML can be used "everywhere":
 - * Spam filters
 - * Log filters (and alarms)
 - * Data analytics
 - * Image recognition
 - * Speech recognition
 - * Medical diagnosis
 - * Robotics
 - *

- * Machine learning is all about approximation
- * Unsupervised Learning vs supervised Learning
 - * Unsupervised Learning
 - * Clustering: hard or soft
 - * Supervised Learning
 - * Train, Predict
- * Predictive Models:
 - * classification, regression

- * Improving Models
 - * Feature engineering
 - * Hyperparameter tuning
- * What to measure? How to interpret the measures?
- * There is so much more to learn in ML...

THANK YOU!

QUESTIONS?

heli@miracleoy.fi

Twitter: @HeliFromFinland

Blog: Helifromfinland.com

