
Method RTM

 Oracle® Performance Monograph Series 2019-10-09T10:31

Any time you change your system, 
you risk creating a performance 
problem that could disrupt your 
business. Good testing reduces the 
risk of such disruptions.

Good tests measure how the appli-
cation is going to feel to your users. 
The Oracle Database extended 
SQL trace feature is the best way 
to do it.

If you can’t test all the features in 
your application, you should at 
least test the features your business 
absolutely depends on.

Tracing programs gives you two 
benefits: increased confidence in 
the performance of the programs 
you trace, and practice in execut-
ing the performance diagnostic 
process you’ll need in production.

When your tests don’t measure your system 
the way your users will perceive it, you can be 
headed for big trouble. When you test, you 
should measure how your application is going to 
feel to your users. These measurements give you 
confidence both in the programs you’ve tested, 
and in the diagnostic process you’ll use later in 
production.

by Cary Millsap

Better Testing, Better 
Risk Reduction

Method RTM

 Oracle® Performance Monograph № 4

Problem
Your project is over, and now people are 
not happy. Maybe it was just a patch. Or 
maybe it was a hardware or software 
upgrade, a migration to the cloud, or a 
brand new application implementation.

What you did was supposed to help, but 
somewhere it went sideways on you. 
Programs that used to run in less than a 
second are taking 20+ seconds now. One 
report that used to run in 10 minutes is 
now taking more than an hour. There are 
ten programs like this.

So now everybody’s watching you. 
Emotions are raging. The conference room 
is called the “War Room” now, and you’re 
on the phone three hours a day now where 
twenty people shout ideas over each other. 
You’re hearing the term “silver bullet” all 
day long. Why can’t you find it?

Plan
The problem with the “silver bullet” 
plan is that there probably isn’t one. It’s 
possible that there’s one magic fix lurking 
in your system that will make everything 
better, but in three decades helping people 
solve these kinds of problems, I don’t 
remember ever actually seeing one. Not 
once.

Whether you have a silver bullet or not 
is not really the right question. The right 
question is, why are these ten programs 
slow? Until you know differently, it’s 
possible that all ten programs are slow for 
ten distinct reasons.

What’s the quickest way to find out? Trace 
each of the ten programs with the Oracle 
Database extended SQL trace feature. This 
feature, unlike any other feature in the 
database, gives you a call-by-call account 
of everything your program did that 
spends time.

If each program is slow for a different 
reason, then you’ll find all ten reasons. If 
all the programs are slow for the same 
reason, then you do have a silver bullet, 
and you’ve just found it!

Once you know how each program spends 
its time, you’ve accomplished the first 
diagnostic step. Your job becomes sniffing 
out wasted time and eliminating it. Maybe 
it’s a problem with an index, or a parame-
ter, or the way your code is written. Maybe 
it’s how your storage subsystem is config-
ured. Maybe the new system just can’t run 
that program as fast as the old system did. 
It happens. There are thousands of ways a 
program can be slow, but your trace data 
will show you exactly where you need 
to focus your attention for the program 
you’re fixing right now. 



Method RTM

 Oracle® Performance Monograph Series

© 2019 Method R Corporation.

Method R, Method R Workbench, and Method R Trace and their respective logos 
are trademarks of Method R Corporation. Oracle is a registered trademark of Oracle 
and/or its affiliates. Other names may be trademarks of their respective owners. 

Method RTM

method-r.com
info@method-r.com

Analysis
Tracing is an awesome way to fix prob-
lems, but wouldn’t it be great to be able 
to prevent them? Of course it would. But 
how? If you could go back in time, what 
would you do differently? The answer is 
better testing. 

You might have had a big test plan. If your 
team is like most, they probably looked at 
some AWR reports. They probably con-
firmed that CPU and wait times and your 
top ten SQL statements on your “after” 
system all look fine.

But those ten programs: you probably 
didn’t check those. If you had, then you 
wouldn’t be surprised today that they’re 
slow. The production problem you’re 
facing right now was caused by how your 
tests were defined. Tests that measure one 
thing (consumptions on AWR reports) 
aren’t very good at guaranteeing some 
other thing (programs running quickly).

What you need to test is how each change 
affects your program durations.

Solution
In a good test, you will measure what 
users will feel when they use the applica-
tion after the change you’re making. The 
test plan is simple:

for every feature in your application
 trace the feature on the “before” system
 trace the feature on the “after” system
 if a duration is unacceptable, then fix it

Sounds good except for one thing, right? 
“For every feature in your application”? 

Literally every feature? What if your appli-
cation has thousands of features?

The answer is, if you can automate it, then 
yes, why not? Method R Workbench, with 
its ability to process tens of thousands of 
trace files in just minutes, makes full-appli-
cation testing possible.

If you don’t want to test every feature 
in your application, then at least test the 
features that your business absolutely 
depends on. For example, if your company 
sells things for a living, then your BookOrder, 
PickOrder, ShipOrder, and BillOrder features 
better be rock-solid. So you should defi-
nitely test those. 

The test plan gives you two important 
assets for each feature you test:

 » A feature’s trace on the “before” system 
gives you an objective baseline against 
which you can measure the effectiveness 
of your project. Having the “before” 
trace makes it much easier to trouble-
shoot the “after” trace in case there’s a 
problem.

 » A feature’s trace on the “after” system 
gives you objective evidence of whether 
the feature is acceptable. If it is not, the 
trace contains all the details you’ll need 
to diagnose where it wastes time. The 

“after” trace also serves as a baseline for 
troubleshooting in the future.

If your application consists of 2,000 fea-
tures and you test only BookOrder, PickOrder, 
ShipOrder, and BillOrder, doesn’t that leave 
you exposed to being blindsided by some 
other feature that you didn’t test? Yes, 
it is entirely possible that some of the 
1,996 other features will surprise you. So, 

if you can’t test all of your features, is it 
worth testing any of them? Absolutely.

 » Testing your application’s most import-
ant features makes it far less likely that 
your project will end up disrupting your 
business. Yes, your application may 
have 2,000 features, but your four most 
important features may account for 80% 
of your workload.

 » When you trace during testing, you 
learn how to be faster and better at 
responding to unanticipated perfor-
mance problems that may occur later in 
production.

Tracing shows you how your programs 
spend time. It’s how you can measure 
what your users feel when they use your 
application. Learning how to trace can 
radically improve the quality of your 
performance testing and your production 
operations. It’s how you can keep yourself 
out of the next ten-program catastrophe, 
and it’s how you can extricate yourself if 
you happen to be in one.

Technology
Method R Workbench is easy-to-use, 
high-precision Oracle time measurement 
software for software development, code 
reviews, performance tests, concept 
proofs, hardware and software evaluations, 
upgrades, troubleshooting, and more—for 
Oracle developers, DBAs, and deci-
sion-makers in every phase of the software 
life cycle.

9Workbench
Method RTM


