<& MeTHOD R Oracle® Performance Monograph N2 4

Better Testing, Better
Risk Reduction

When your tests don't measure your system

the way your users will perceive it, you can be
headed for big trouble. When you test, you
should measure how your application is going to
feel to your users. These measurements give you
confidence both in the programs you've tested,
and in the diagnostic process you'll use later in

production.

by Cary Millsap

Any time you change your system,
you risk creating a performance
problem that could disrupt your
business. Good testing reduces the
risk of such disruptions.

Good tests measure how the appli-
cation is going to feel to your users.
The Oracle Database extended
SQL trace feature is the best way
to doit.

If you can't test all the features in
your application, you should at
least test the features your business
absolutely depends on.

Tracing programs gives you two
benefits: increased confidence in
the performance of the programs
you trace, and practice in execut-
ing the performance diagnostic
process you'll need in production.

<& MeTHOD R’ Oracle® Performance Monograph Series

Problem

Your project is over, and now people are
not happy. Maybe it was just a patch. Or
maybe it was a hardware or software
upgrade, a migration to the cloud, or a
brand new application implementation.

What you did was supposed to help, but
somewhere it went sideways on you.
Programs that used to run in less than a
second are taking 20+ seconds now. One
report that used to run in 10 minutes is
now taking more than an hour. There are
ten programs like this.

So now everybody’s watching you.
Emotions are raging. The conference room
is called the “War Room” now, and you're
on the phone three hours a day now where
twenty people shout ideas over each other.
You're hearing the term “silver bullet” all
day long. Why can’t you find it?

Plan

The problem with the “silver bullet”

plan is that there probably isn’t one. It’s
possible that there’s one magic fix lurking
in your system that will make everything
better, but in three decades helping people
solve these kinds of problems, I don’t
remember ever actually seeing one. Not
once.

Whether you have a silver bullet or not

is not really the right question. The right
question is, why are these ten programs
slow? Until you know differently, it’s
possible that all ten programs are slow for
ten distinct reasons.

What's the quickest way to find out? Trace
each of the ten programs with the Oracle
Database extended SQL trace feature. This
feature, unlike any other feature in the
database, gives you a call-by-call account
of everything your program did that
spends time.

If each program is slow for a different
reason, then you'll find all ten reasons. If
all the programs are slow for the same
reason, then you do have a silver bullet,
and you’ve just found it!

Once you know how each program spends
its time, you’ve accomplished the first
diagnostic step. Your job becomes sniffing
out wasted time and eliminating it. Maybe
it’s a problem with an index, or a parame-
ter, or the way your code is written. Maybe
it’s how your storage subsystem is config-
ured. Maybe the new system just can’t run
that program as fast as the old system did.
It happens. There are thousands of ways a
program can be slow, but your trace data
will show you exactly where you need

to focus your attention for the program
you're fixing right now.

2019-10-09T10:31



Analysis

Tracing is an awesome way to fix prob-
lems, but wouldn't it be great to be able
to prevent them? Of course it would. But
how? If you could go back in time, what
would you do differently? The answer is
better testing.

You might have had a big test plan. If your
team is like most, they probably looked at
some AWR reports. They probably con-
firmed that CPU and wait times and your
top ten SQL statements on your “after”
system all look fine.

But those ten programs: you probably
didn’t check those. If you had, then you
wouldn’t be surprised today that they’re
slow. The production problem you're
facing right now was caused by how your
tests were defined. Tests that measure one
thing (consumptions on AWR reports)
aren’t very good at guaranteeing some
other thing (programs running quickly).

What you need to test is how each change
affects your program durations.

Solution

In a good test, you will measure what
users will feel when they use the applica-
tion after the change you're making. The
test plan is simple:

for every feature in your application
trace the feature on the “before” system
trace the feature on the “after” system
if a duration is unacceptable, then fix it

Sounds good except for one thing, right?
“For every feature in your application”?

EF:E & MeTrHOD R

L
method-r.com
(=] info@method-r.com

Literally every feature? What if your appli-
cation has thousands of features?

The answer is, if you can automate it, then
yes, why not? Method R Workbench, with
its ability to process tens of thousands of
trace files in just minutes, makes full-appli-
cation testing possible.

If you don’t want to test every feature

in your application, then at least test the
features that your business absolutely
depends on. For example, if your company
sells things for a living, then your BookOrder,
PickOrder, ShipOrder, and BillOrder features
better be rock-solid. So you should defi-
nitely test those.

The test plan gives you two important
assets for each feature you test:

» A feature’s trace on the “before” system
gives you an objective baseline against
which you can measure the effectiveness
of your project. Having the “before”
trace makes it much easier to trouble-
shoot the “after” trace in case there’s a
problem.

» A feature’s trace on the “after” system
gives you objective evidence of whether
the feature is acceptable. If it is not, the
trace contains all the details you'll need
to diagnose where it wastes time. The

“after” trace also serves as a baseline for
troubleshooting in the future.

If your application consists of 2,000 fea-
tures and you test only BookOrder, PickOrder,
ShipOrder, and BillOrder, doesn’t that leave
you exposed to being blindsided by some
other feature that you didn’t test? Yes,

it is entirely possible that some of the
1,996 other features will surprise you. So,

if you can’t test all of your features, is it
worth testing any of them? Absolutely.

» Testing your application’s most import-
ant features makes it far less likely that
your project will end up disrupting your
business. Yes, your application may
have 2,000 features, but your four most
important features may account for 80%
of your workload.

» When you trace during testing, you
learn how to be faster and better at
responding to unanticipated perfor-
mance problems that may occur later in
production.

Tracing shows you how your programs
spend time. It's how you can measure
what your users feel when they use your
application. Learning how to trace can
radically improve the quality of your
performance testing and your production
operations. It's how you can keep yourself
out of the next ten-program catastrophe,
and it's how you can extricate yourself if
you happen to be in one.

Technology

Method R Workbench is easy-to-use,
high-precision Oracle time measurement
software for software development, code
reviews, performance tests, concept
proofs, hardware and software evaluations,
upgrades, troubleshooting, and more —for
Oracle developers, DBAs, and deci-
sion-makers in every phase of the software
life cycle.

MerHoD R

Workbench

<& MeTHOD R’ Oracle® Performance Monograph Series



