
Method RTM

 Oracle® Performance Monograph Series 2019-10-09T10:31

Making performance easier to
measure and manager requires
application features you may not
have realized you can ask for.

An application that’s easier to
measure is less costly to operate
and easier to optimize.

If you’re writing your own
application, it’s easy to set identi-
fying information that will make a
program easy to trace later.

You can create easy-access
performance observability into
your application with just a little
imagination and a few hours of
application development effort.

It’s easy these days to mine interesting user
experiences out of enormous trace data
collections. But there’s still value in being able to
trace that one user or that one program, right
when you need it.

by Cary Millsap

Making Your Application
Easier to Diagnose

Method RTM

 Oracle® Performance Monograph № 7

Problem
Maybe you get a phone call, or maybe
you overhear it in the lunchroom. Nancy
claims that when she books an order on
your sales order entry system, it’s always
slower then when anyone else does it. Is
it true? Is the system really slower for
Nancy? Maybe she just has tougher stan-
dards than everybody else. Or maybe she
books bigger orders than everyone else.
But maybe there’s something wrong.

Step one is to separate the subjective from
the objective. You’d like to trace Nancy’s
next BookOrder execution and three or four
of her teammates’ orders. Then you could
do a side-by-side comparison about how
the different executions spent time. But
how in the world would you do that?

DBMS_MONITOR
An Oracle-based application doesn’t need
much extra code in it to make it easily
traceable with the standard DBMS_MONITOR
package distributed with every edition
and release of the Oracle Database product.

DBMS_MONITOR is a little bit magic. It creates
a standing order to trace a program in the
future, without your having to be there
to do it. For example, one procedure
called CLIENT_ID_TRACE_ENABLE lets you

specify that any time any program on
your system identifies itself with a given
client identifier, Oracle will automatically
trace it. Even when that program runs at
3:14 a.m., Oracle will automatically trace
it, without your having to wake up to do
it. Oracle will trace every execution of
such a program until you execute a CLIENT_
ID_TRACE_DISABLE command to cancel the
standing order.

Another procedure called SERV_MOD_ACT_
TRACE_ENABLE does the same thing for
programs that identify themselves by
setting their service, module, and action
names. You can see a program’s service,
module, action, and client identifier values
in V$SESSION. The ENABLE and DISABLE pro-
cedures of DBMS_MONITOR behave as if you
have a trigger on V$SESSION. But you don’t.

Oracle Database provides everything you
need to trace this way (you don’t need any
extra license options or packs), except for
one thing:

You need your application programs
to identify themselves so that
DBMS_MONITOR can find them.

Instrumenting Your App
Some applications, like Oracle E-Business
Suite, set unique names for many of their

Method RTM

 Oracle® Performance Monograph Series

© 2019 Method R Corporation.

Method R, Method R Workbench, and Method R Trace and their respective logos
are trademarks of Method R Corporation. Oracle is a registered trademark of Oracle
and/or its affiliates. Other names may be trademarks of their respective owners.	

Method RTM

method-r.com
info@method-r.com

programs, making it easy to enable and
disable tracing with DBMS_MONITOR.

Many applications that we visit in our
field work don’t make it easy to do tar-
geted tracing. These applications are the
reason we created the big-data features
of our Method R Workbench application.
For example, you can simply trace the
entire Oracle instance for the time inter-
vals you’re interested in (sometimes many
hours), and then use our Workbench to
shred quickly through your trace files.
Even if there are tens of thousands of them.

If you are building your own Oracle-based
application, then you have the opportunity
to make application tracing easy. Making
it happen is also easy. How you do it
depends on the language in which you
write your business logic.

If you are writing your business logic in
PL/SQL—and I hope you are, because
that’s the best way to maximize correct-
ness, security, and performance—then
use the DBMS_APPLICATION_INFO.SET_MODULE
to set your program’s module and action
names, and DBMS_SESSION.SET_IDENTIFIER to
set your program’s client identifier value.

If you are writing your business logic in
another language like Java, PHP, C#, or
Python, the module, action, and client
identifier fields are exposed as connection
object properties that you can set or reset
with just one line of code.

Either way you do it, the pseudocode
looks like this:

set module, action, clientid
your business function’s code path goes here
unset module, action, clientid

Performance, as a Feature
There’s a lot more you could do. For
example, you could have each application
function consult a table that defines how
often that function should be traced. You
could implement rules like, “Trace only
the first BookOrder transaction each hour,”
or “Trace only a randomly selected 5%
of BookOrder executions.” With just a little
imagination, you can turn performance

observability into a first-class application
feature.

But you don’t have to get fancy to make
a lot of progress. Simply having your
programs identify themselves with unique
module/action name combinations is
enough to give your database operators an
easy way to trace any program they know
the name of, now and forever. And having
each of your programs set its client identi-
fier value to a name that identifies who is
running the program—that makes it easy
for the database operator to trace Nancy’s
and three or four of her teammates’ orders.

It’s exactly the information you wanted,
and it’s not hard to do.

Technology
Method R Workbench is easy-to-use,
high-precision Oracle time measurement
software for software development, code
reviews, performance tests, concept
proofs, hardware and software evaluations,
upgrades, troubleshooting, and more—for
Oracle developers, DBAs, and deci-
sion-makers in every phase of the software
life cycle. For full details about how to
make your application easier to diagnose,
order a copy of The Method R Guide to
Mastering Oracle Trace Data.

9Workbench
Method RTM

The definitive guide to accurate, high-precision
measurement of user performance experiences,
for Oracle application developers and DBAs.

Me RTM

MASTERING
ORACLE

TRACE DATA

Cary V. Millsap

