
Method RTM

 Oracle® Performance Monograph Series 2019-10-09T10:31

The way you look at your system
can block you from understanding
your performance problems.

Many Oracle technologists don’t
know how to answer the most
fundamental question about
performance: “How does a given
program spend its time?”

Tracing explains how a program
spends its time. This enables you to
find wasted time, no matter where it
occurs in your technology stack.

Method R Workbench makes it easy
to work with trace data, even when
you have thousands of trace files.

The ability to measure the response
times of your business’s more
important programs helps you solve
more problems, more efficiently.

How do you solve production performance
problems? The method you use may be
structurally incapable of helping you find certain
types of performance problems. Changing how
you look at your system makes all the difference.

by Cary Millsap

Solving the Unsolvable
Performance Problem

Method RTM

 Oracle® Performance Monograph № 1

Problem
We meet people all the time who have
suffered a particular performance problem
for months, or even years. The people we
work with are plenty smart and plenty
motivated. Most of them have spent loads
of money on hardware upgrades and con-
sulting assistance. How can their problems
remain unsolved for so long?

Most technologists view a computer
system from the supply perspective. They
measure the system’s internal resources
and seek patterns that might imply bad
behavior. Unfortunately, many perfor-
mance problems are invisible to this
method. However, the same problems are
easy to find when you view the system
from the demand perspective.

Plan
You can solve more problems and waste
less time when you stop looking at a
system as a collection of resources and
start looking at it as a collection of user
experiences. For example, imagine that your
business tells you that BalanceInquiry is too
slow. Then your success will be measured
by how much you improve the response
time of BalanceInquiry. No other metric

matters. Your mission, then, begins with
answering one critical question:

How does BalanceInquiry spend its time?

The problem is, tools like AWR and Oracle
Enterprise Manager don’t answer that
question. It’s even worse than it sounds:
those tools can actually weaken your
understanding of what your programs are
really doing. The performance ideas your
tools inspire may actually be the cause of
your suffering.

Analysis
You can answer the big question—“How
does my program spend its time?”—by
representing a program’s duration in
the same quantity-and-price format you
would expect on an invoice or a restau-
rant receipt. This type of report is called a
profile.

A profile’s bottom line shows the dura-
tion that the person who ran the program
actually felt, and the durations in the table
sum to the bottom line. The format makes
it clear that there are only two possible
root causes for any performance problem:
(a) some call count (quantity) is too high,
or (b) some call duration (price) is too high.

Method RTM

 Oracle® Performance Monograph Series

© 2019 Method R Corporation.

Method R, Method R Workbench, and Method R Trace and their respective logos
are trademarks of Method R Corporation. Oracle is a registered trademark of Oracle
and/or its affiliates. Other names may be trademarks of their respective owners.	

Method RTM

method-r.com
info@method-r.com

Solution
You can’t create a profile like this for an
Oracle application program using AWR
(or even ASH) data. But Oracle does
provide the information you need to create
a profile with its extended SQL trace feature.

Tracing is easy, but it can generate a lot of
data. With our Method R Workbench, you
can profile individual user experiences
even if you have thousands of trace files.
The result: a method for solving problems
you wouldn’t have solved any other way.

Example
A wealth management application has
had performance problems for a year. The
BalanceInquiry feature is normally almost
instantaneous, but several times each day,
it consumes 20 s (seconds) or more. The
behavior is eroding customer faith in the
application.

The application isn’t designed for easy
tracing, so we trace the whole system for
an hour. We use Method R Workbench
to find the 20 s BalanceInquiry execution. Its
profile reveals that 19.8 s is consumed by a
single log file sync call.

Further investigation using information
that is available only in trace files reveals
that this specific log file sync call was
blocked by a log file parallel write call being
executed at the same time by the Oracle
LGWR process. Other users were similarly
blocked by the same write call.

We found this problem within 30 minutes
of receiving our first batch of trace files.
How could it have evaded detection for a

year? It’s because the
“average” log file sync
call isn’t a problem.
AWR shows that
the average log file
sync duration on this
system is only 0.025 s.

In hindsight, of
course you can see in
v$event_histogram that
log file sync calls do
take 19+ s sometimes.
But the team didn’t
act on that informa-
tion because log file

sync was unremarkable—v$event_histogram
shows fifty other call types that behave the
same way. Even if someone had proposed
log file sync as BalanceInquiry’s problem, the
organization probably wouldn’t have had
the resolve to fix it, because there was no
cause-effect link to justify the cost.

…And so the intermittent BalanceInquiry
problem persisted for a year. Before tracing,
there were hundreds of possible root
causes, none provable or disprovable with
aggregated data. But after tracing, there is
no doubt: log file sync (and thus log file parallel
write) is the definite cause of the problem.

Method
This is a story we repeat over and over:
intractable problem; trace it (trace every-
thing if we have to, and sift through tens
of thousands of trace files in just a few
minutes with Method R Workbench);
profile the interesting user experience;
now we know where the wasted time goes.

»» In an airport management system expe-
riencing application timeouts, trace files
revealed a row lock held for ten seconds
because of an intermittent disk latency
problem. Nothing in the system-wide
statistics implicated either locking or
disk I/O as a diagnostic priority.

»» In a global convenience store’s test
kitchen where a simple ingredient
search took two minutes on a $6,000,000
computer, trace files revealed a badly
chosen Oracle parameter value and an
application design mistake. Neither
problem presented symptoms visible in
system-wide statistics.

»» In a professional society that had just
moved to the cloud, trace files revealed
response times dominated by now-lon-
ger network latencies. Luckily, a bad but
easily fixable coding habit was causing a
lot of unnecessary network round trips.
Their Oracle monitoring tools, like most,
discard network I/O call data.

»» In a GPS location monitoring applica-
tion that intermittently overwhelmed its
CPU capacity, trace files revealed a bad
coding habit of dynamically generating
and parsing thousands of unique SQL
statements per hour. Monitoring tools
showed the bad practice but underval-
ued the impact.

»» In a finance management system that
overran its nightly batch window, trace
files revealed the problem to be not an
Oracle Database problem at all, but a
suboptimally programmed third-party
application running between specific
pairs of SQL statements. Monitoring
tools did report the database as mostly
idle but provided insufficient informa-
tion to help solve the problem.

Everywhere we go, we find problems
hiding behind averages. The symptoms
vary from one system to the next, but
the same method works for all of them:
you answer the question, “How does my
program spend its time?” The answer
begins with tracing.

Technology
Method R Workbench is easy-to-use,
high-precision Oracle time measurement
software for software development, code
reviews, performance tests, concept
proofs, hardware and software evalu-
ations, upgrades, troubleshooting, and
more—for Oracle developers, DBAs, and
decision-makers in every phase of the soft-
ware life cycle. The sifting and profiling
operations described in this monograph
are standard product features.

9Workbench
Method RTM

Subroutine
Duration
(seconds) Calls

Mean
duration
per call

(seconds)

Max
duration
per call

(seconds)
db file parallel read 15.624 3 5.208 5.407
waiting for CPU 13.844 21 0.659 13.657
CPU: EXEC dbcalls 0.261 8 0.032 0.245
11 others 0.274 4,170 0.000 0.000
Total (14) 30.003 4,202 0.003 13.657

A profile represents a program’s duration as a table of quantities
(calls) and prices (durations). It’s an invoice for response time.

