
Method RTM

 Oracle® Performance Monograph Series 2019-10-09T10:31

Comparing how programs spend
their time is a common Method R
Workbench use case.

Comparing how a program spends
its time on two supposedly identical
systems can reveal opportunities
for improving performance on the
slower system.

Knowing details about individu-
al database and system calls—an
Oracle feature that is available
only in trace data—can be vital
to understanding how a program
spends time.

Adding memory may not be the
best way to solve buffer cache
abuse. It may be faster, less
costly, and less risky to optimize or
reschedule your workload.

Why does a report run twice as fast on an
identically configured sandbox? It’s not the
execution plan. Method R Workbench makes it
easy to find out.

by Cary Millsap

The Case of the
2× Slower Report

Method RTM

 Oracle® Performance Monograph № 5

Problem
A report that runs for one hour on the
sandbox system takes two hours on the
production system. Both systems use iden-
tical hardware configurations. A nightly
mirror-copy process ensures that both file
systems are byte-for-byte identical each
morning. All configuration parameters,
optimizer statistics, and data are identical,
and both reports are executed using the
same input arguments. Both systems run
the exact same SQL statements and use the
exact same execution plans. Why does the
production report take twice as long?

Plan
The difference could be anything. There
are thousands of ways that your report on
one system can spend your time differ-
ently than on another system. You’d drive
yourself crazy trying to check for them all.
We solve the problem by observing how
each program spent every microsecond of
its time.

Enabling Oracle extended SQL trace for
a report execution on each system will
create two trace files. Loading these files
into the Method R Workbench application
will give us a beautifully formatted HTML

profile showing you how each report has
spent its time.

Analysis
As expected, the production profile
explains a 2-hr report execution, and the
sandbox profile explains a 1-hr execution.
But the production profile contains an
extra hour of time spent executing db file
sequential read calls. Why would there be an
extra hour of reading on prod?

A difference in time spent reading can be
caused only by a difference in call laten-
cies, or a difference in call counts. In this
case, it is both. The latency per call is about
3× longer on prod, which is curious. But
there are 22× more calls on prod, which is
extraordinary. Why would two identical
systems running the same report on the
same data need to execute such vastly
different numbers of read calls?

The profile shows that the call count
difference is not due to differences in
row counts, or buffer cache touches, or
execution plans. All those measurements
are the same on both systems. We need to
know which database blocks each report
is reading.

Method R Workbench can show you this
information. For every individual read

Method RTM

 Oracle® Performance Monograph Series

© 2019 Method R Corporation.

Method R, Method R Workbench, and Method R Trace and their respective logos
are trademarks of Method R Corporation. Oracle is a registered trademark of Oracle
and/or its affiliates. Other names may be trademarks of their respective owners.

Method RTM

method-r.com
info@method-r.com

call, you can see specifically which blocks
were read, how many blocks were read,
and how long the call took. Method R
Workbench can report the information
you need, grouped by Oracle Database
block ID.

As everyone expected, both systems read
exactly the same blocks from disk into the
database buffer cache. The surprise is how
many times each block was re-read. On
sandbox, the report read each block only
two or three times in the worst case, but
on prod, the report read Oracle database
blocks an average of 12× apiece. It read
some blocks as many as 70× apiece!

The two systems may look identical, but
they have one important difference: prod
serves thousands of concurrent programs,
while sandbox lopes along mostly idle. On
sandbox, when the report needs to visit a
block in the buffer cache a second, third, or
even seventieth time, the block is usually
cached, waiting patiently. But prod is so
busy serving other programs that by the
time the report needs its second access
to the block that it had just read just
moments ago, some other program has
already aged the block out of the cache,
requiring the report to read it again—a
second, third, or seventieth time.

Of course, the extra read calls on prod
create a second type of performance

penalty as well: disk I/O queueing. The
increase in read call counts makes it more
likely, for every program on the system,
that the next read call will have to wait
behind some other program’s read call,
which is responsible for driving the read
call latencies up by 3×.

The increases in both call counts and call
latencies add up, causing the overall expe-
rience duration on prod to double.

Solution
The database buffer cache on prod is too
small to handle the load being imposed
upon it. Allocating more memory is one
option, but it’s not the first one you should
consider:

1. Is the report written to run efficiently?
Maybe with a little attention to the SQL,
it won’t need to visit the same blocks
over and over.

2. Are there other inefficient SQL state-
ments in the prod workload that are
ruining the database buffer cache for
everyone?

3. Could some buffer-cache–intensive
programs be scheduled to run in the
middle of the night instead of during
peak hours?

4. Would allocating more memory to the
database buffer cache help? How much
to add requires analysis and experi-
mentation, and you have to beware of
side effects. For example, if you use
Oracle® Exadata®, then making your
buffer cache bigger may degrade the
performance of other programs that use
Smart Scan.

5. Will you need to upgrade your system?
Maybe you’ve already allocated all the
memory that you can.

Technology
Method R Workbench is easy-to-use,
high-precision Oracle time measurement
software for software development, code
reviews, performance tests, concept
proofs, hardware and software evaluations,
upgrades, troubleshooting, and more—for
Oracle developers, DBAs, and deci-
sion-makers in every phase of the software
life cycle. The block ID report described in
this monograph is a standard report that is
shipped with the product.

9Workbench
Method RTM

