Futuristic SQL

Making the impossible possible

Connor McDonald

Database Advocate

Getting in touch is easy...

@connor_mc_d

https://linktr.ee/connor

key point

this session is not about ...

being a smarty pants

we can do anything ...

```
SQL> with x(s, ind) as
    ( select sud, instr( sud, '.' )
 3
       from ( select replace(replace(
 4
                 replace (replace (:board, '-'), '|'), ' '), chr(10)) sud
 5
              from dual )
  6
      union all
       select substr(s,1,ind-1)||z||substr(s,ind+1)
 8
            , instr(s,'.',ind+1)
       from x
10
          , ( select to char( rownum ) z
11
              from dual connect by rownum <= 9 ) z
12
       where ind > 0
13
       and not exists (
14
          select null
15
          from ( select rownum lp from dual
16
                 connect by rownum <= 9 )</pre>
          where z = substr(s, trunc((ind-1)/9)*9+lp,1)
17
```

```
18
                z = substr(s, mod(ind-1, 9) - 8 + 1p * 9, 1)
         or
                z = substr(s, mod(trunc((ind-1)/3), 3)*3
19
         or
                              +trunc((ind-1)/27)*27+1p
20
                              +trunc((1p-1)/3)*6,1)
21
22
23
24
    result as (
25
      select s
26
     from x
27
      where ind = 0)
28
    select
29
      regexp replace(substr(s,(idx-1)*9+1,9),
                  '(...)(...)(...)',
30
31
                  '\1|\2|\3')||
32
      case when mod(idx,3)=0 then chr(10)||rpad('-',11,'-') end
                                                                      soln
33
    from result,
34
         ( select level idx
35
          from dual
36
          connect by level <= 9 )</pre>
```

```
SQL> variable board varchar2(1000)
SQL> begin :board :=
  3
                                     9
  6
                                     6
  8
  9
 10
 11
                                         9
                                  4
 12
 13
                                     8
 14
     end;
```

SOLUTION

534 | 678 | 912 672 | 195 | 348 198 | 342 | 567 859 | 761 | 423 426 | 853 | 791 713 | 924 | 856 961 | 537 | 284 287 | 419 | 635 345 | 286 | 179

real stuff

My typical weekend

... SQL edition

Son #1

apex.oracle.com

```
SQL> select quarter, tstamp, player, points
2  from basketball
3  order by tstamp;

QUARTER TSTAMP PLAYER POINTS

1 12:30:12 Campbell 1
1 12:31:57 Robbie 3
1 12:32:03 Zack 2
1 12:32:08 Robbie 1
1 12:32:19 Robbie 2
1 12:33:05 Max 3
```

1 12:33:08 Campbell 1 12:33:22 Campbell 1 12:33:59 Campbell 1 12:34:19 Rory 1 12:35:25 Campbell 1 12:35:50 Matt 1 12:35:54 Robbie 1 12:35:54 Will 1 12:36:07 Matt

. .

"I need the points per player, plus quarter by quarter totals, plus the grand total"

```
SQL> select quarter, tstamp, player, points
              sketball
     from
     order b
               rtamp;
   QUAR SQL> sel
                    quarter, 💅
                                (points)
                     ketbal
             from
                       rua'
             group
             order by
           QUARTER
                    JM (P
             SQT
                  select s
                              oints)
                  from baske
             SUM (POINTS)
                     119
```

from 3 to 2

rollup


```
SQL> select quarter, tstamp, player, points
    from basketball
    order by tstamp;
   QUARTE SQL> select quarter, sum (points)
           2 from basketball
           3 group by rollup(quarter)
            4 order by 1;
             QUARTER SUM (POINTS)
                              43
                              19
                              33
                              24
                             119
```

still messy...

QUARTER	PLAYER	POINTS
1	Campbell	1
1	Robbie	3
1	Zack	2
1	Robbie	1
•	•••	
2	Max	3

QUARTER	SUM (POINTS)
1	43
2	19
3	23
4	24
	119

"TL;DR ... the app can do this for me"

Basketball


```
select
        QUARTER,
        PLAYER,
        POINTS,
        sum(POINTS) over (partition by QUARTER),
        count(*) over () as apxws row cnt
 from (
   select *
   from (
     select PLAYER,
            POINTS,
            QUARTER
       from EMP
     r
 order by "QUARTER"
```

from 2 to 1


```
SQL> select quarter,
           nvl2(ball pk,max(player),null) player,
           nvl2(ball pk,max(tstamp),null) tstamp,
           sum(points)
    from basketball
    group by rollup(quarter,ball pk)
    order by quarter, tstamp;
  QUARTER PLAYER
                     TSTAMP
                             SUM (POINTS)
        1 Campbell 12:30:12
                                      10
        1 Robbie 12:31:57
                    12:32:03
        1 Zack
                                      43
        2 Robbie 13:00:37
        2
                                      19
        4 Max
                     14:11:54
        4
                                      24
                                     119
```

all totals are possible

SQL> select quarter,player,sum(points) from basketball 2 group by cube(quarter,player);

QUARTER	PLAYER	SUM (POINTS)
1	Campbell	10
1	Matt	5
	-	_
1	Rory	5
1	Will	3
1	Zack	4
1		43
	Campbell	26
	Matt	12
	_	4.5
	Rory	15
	Will	16
	Zack	15
		119

totally customisable


```
SQL> select quarter,player,sum(points)
  2 from basketball
  3 group by grouping sets (
       (player), (quarter), () );
  4
   QUARTER PLAYER
                      SUM (POINTS)
                                43
                                19
         3
                                33
                                24
         4
                                26
           Campbell
                                12
           Matt
                                11
           Max
                                24
           Robbie
                                15
           Rory
                                16
           Will
                                15
           Zack
                               119
```

```
SQL> select quarter,player,sum(points)
  2 from basketball
  3 group by grouping sets (
       (player), (quarter), () );
  4
   QUARTER PLAYER
                      SUM (POINTS)
                                43
                                19
         3
                                33
                                24
                                26
           Campbell
                                12
           Matt
                                11
           Max
                                24
           Robbie
                                15
           Rory
                                16
           Will
                                15
           Zack
                               119
```

```
SQL> select quarter,player,sum(points)
  2 from basketball
  3 group by grouping sets (
       (player), (quarter), ());
  4
   QUARTER PLAYER
                      SUM (POINTS)
                                43
                               19
         3
                               33
                               24
                               26
           Campbell
                               12
           Matt
                               11
           Max
                               24
           Robbie
                               15
           Rory
                               16
           Will
                               15
           Zack
                               119
```

```
SQL> select quarter,player,sum(points)
  2 from basketball
  3 group by grouping sets (
       (player), (quarter), () );
  4
   QUARTER PLAYER
                      SUM (POINTS)
                                43
                                19
         3
                                33
                                24
         4
                                26
           Campbell
                                12
           Matt
                                11
           Max
                                24
           Robbie
                                15
           Rory
                                16
           Will
                                15
           Zack
                               119
```

Q Search	Go
 Job	7
CLERK (4)	
SALESMAN (4)	
MANAGER (3)	
ANALYST (2)	
PRESIDENT (1)	
Salary	
<900 (1)	
900 - 1300 (4)	
1300 - 2000 (3)	
2000 - 2500 (1)	
>=2500 (5)	
to	Go
Deptno	
30 (6)	
20 (5)	

Employee Name ↑≞	Job	Mgr	Hired
ADAMS	CLERK	7,788	1/12/1983
ALLEN	SALESMAN	7,698	2/20/1981
BLAKE	MANAGER	7,839	5/1/1981
CLARK	MANAGER	7,839	6/9/1981
FORD	ANALYST	7,566	12/3/1981
JAMES	CLERK	7,698	12/3/1981
JONES	MANAGER	7,839	4/2/1981
KING	PRESIDENT		11/17/1981
MARTIN	SALESMAN	7,698	9/28/1981
MILLER	CLERK	7,782	1/23/1982
SCOTT	ANALYST	7,566	12/9/1982
SMITH	CLERK	7,902	12/17/1980
TURNER	SALESMAN	7,698	9/8/1981
WARD	SALESMAN	7,698	2/22/1981

```
select *
from(
  select
      grouping id( "JOB", "APX$BUCKET3", "DEPTNO") "APX$GRPID",
      "JOB" "APX$FLTV2",
      count(*)"APX$FLTC2",
      "APX$BUCKET3" "APX$FLTV3",
      count(*)"APX$FLTC3",
      "DEPTNO" "APX$FLTV4",
      count(*)"APX$FLTC4",
      count(*)APX$ALLC
from(( select i.*
   from (select "ENAME", "JOB", "SAL", "DEPTNO"
         from ((select /*+ qb name(apex$inner) */
                     d. "ENAME", d. "JOB", d. "SAL", d. "DEPTNO"
                 from (select x.* from "EMP" x
 ) d )) i ) i ) )
group by grouping sets ("JOB", "APX$BUCKET3", "DEPTNO", ())
```

Your Basketball data

Suzy Parent

To: Connor McDonald

Hi Connor,

I saw the report you gave to the coach from the game.

Thanks, Suzy


```
SQL> select rownum qtr
2 from dual
3 connect by level <= 4;

QTR

1
2
3
4
```

```
SQL> select quarter, player, sum(points)
 2 from basketball
 3 group by quarter, player
 4 order by 1,2;
  QUARTER PLAYER
                       PTS
       1 Campbell
                        10
       1 Matt
       1 Max
       1 Robbie
                        10
       1 Rory
       1 Will
       1 Zack
       2 Campbell
       2 Matt
       2 Max
```

player results by quarter

conventional outer join


```
SQL> select qtr, player, pts
  2 from
       ( select quarter, player, sum(points) pts
        from basketball
  4
  5
        group by quarter, player ) b
    right outer join
       ( select rownum qtr from dual connect by level <= 4 ) q
    on (q.qtr = b.quarter)
    order by 2,1;
       QTR PLAYER
                             PTS
         1 Campbell
                           10
         2 Campbell
         3 Campbell
         4 Campbell
                               5
         1 Matt
                               2
         2 Matt
         4 Matt
                               5
                               6
         1 Max
                               2
         3 Max
         4 Max
```

the data is sparse


```
SQL> select rownum qtr
2 from dual
3 connect by level <= 4;

QTR

1
2
3
4
```

```
SQL> select quarter, player, sum(points)
 2 from basketball
 3 group by quarter, player
 4 order by 1,2;
  QUARTER PLAYER
                         PTS
       1 Campbell 10
       1 Matt
       1 Max
       1 Robbie
                          10
       1 Rory
       1 Will
        1 Zack
        2 Campbell
        2 Matt
        2 Max
```

```
SQL> select rownum qtr
2 from dual
3 connect by level <= 4;

QTR

1
2
3
4
```

```
x "Campbell"
x "Max"
...
```

x "Player n"

partitioned outer join


```
SQL> select qtr, player, nvl(pts,0)
 2
    from
      ( select quarter, player, sum(points) pts
     from basketball
    group by quarter, player ) b
  6 partition by (b.player)
    right outer join
 8 ( select rownum qtr from dual connect by level <= 4 ) q</pre>
  9 on ( q.qtr = b.quarter )
 10 order by 2,1;
      QTR PLAYER
                           PTS
        1 Campbell
                            10
        2 Campbell
        3 Campbell 9
        4 Campbell
                             6
                             5
        1 Matt
        2 Matt
        3 Matt
                             5
        4 Matt
        1 Max
                             6
        2 Max
        3 Max
        4 Max
```

= Basketball

Boosting the offense

Mary Coach

To: Connor McDonald

Hi Connor,

We have a new boy who is looking at joining the team.

I don't know much about him, but lets assume he averages 13 points per game.

Thanks, Mary

```
SQL> select player, sum(points)
```

- 2 from basketball
- 3 group by player;

PLAYER	SUM (POINTS)
Will	19
Campbell	23
Robbie	12
Zack	18
Rory	12
Max	23
Matt	10

hypothetical analytics

"What if he gets 4 points per quarter?"


```
SQL> select
      quarter,
 2
   rank(4) within group ( order by pts ) ranking
    from
    ( select player, quarter, sum(points) pts
       from basketball
   group by player, quarter
    group by quarter
10 order by 1;
  QUARTER RANKING
```


SQL> select * 2 from long_jump 3 order by 1,2;

COMP#	JUMP	WIND	DISTANCE	NAME
1	1	Head	6.16	Liam
1	2	Head	6.34	Aden
1	3	Head	6.07	Noah
1	4	Head	5.74	Ethan
2	1	Head	5.61	Noah
2	2	Head	6.21	Daniel
2	3	Head	6.26	Liam
2	4	Head	5.98	Noah
3	1	None	6.58	Oliver
3	2	None	6.45	Oliver
3	3	None	6.53	James
3	4	None	6.03	Oliver
4	1	Tail	5.86	David
4	2	Tail	5.85	James
4	3	Tail	5.94	Liam
4	4	Tail	6.14	James

• • •

. . .

"Find the highest jump achieved by each competitor"

```
SQL> select name, max(distance) hi
     from long_jump
  3 group by name
     order by 1;
NAME
                         HI
                       7.16
Aden
                       6.79
Alex
                       6.19
Ben
                       6.32
Daniel
David
                       6.03
                       6.38
Ethan
                       6.56
Henry
Jack
                       6.67
                       6.14
James
                       6.51
John
Joseph
                       6.49
```

"...and what was the wind like when they achieved that?"


```
SQL> select name, max(distance) hi
2 from long_jump
3 group by name
4 order by 1;
```

KEEP clause

order by 'x' but output 'y'

```
SQL> select name,
            max(distance) as hi,
  3
            max(wind) keep ( dense_rank last order by distance ) as hi_pos
     from long_jump
  5 group by name
  6 order by 1;
NAME
                         HI HI POS
Aden
                       7.16 None
                       6.79 Tail
Alex
Ben
                       6.19 Head
Daniel
                       6.32 Head
David
                       6.03 Head
Ethan
                       6.38 Tail
Henry
                       6.56 None
Jack
                       6.67 Tail
                       6.14 Tail
James
John
                       6.51 Tail
                       6.49 Tail
Joseph
Julian
                       6.42 Tail
. . .
```

```
SQL> select name,
            max(distance) as hi,
  3
            max(wind) keep ( dense_rank last order by distance ) as hi_pos
     from long_jump
  5 group by name
  6 order by 1;
NAME
                         HI HI POS
Aden
                       7.16 None
                       6.79 Tail
Alex
Ben
                       6.19 Head
Daniel
                       6.32 Head
David
                       6.03 Head
Ethan
                       6.38 Tail
Henry
                       6.56 None
Jack
                       6.67 Tail
                       6.14 Tail
James
John
                       6.51 Tail
                       6.49 Tail
Joseph
Julian
                       6.42 Tail
. . .
```

```
SQL> select name,
            max(distance) as hi,
  3
            max(wind) keep ( dense rank last order by distance ) as hi pos
     from long_jump
  5 group by name
  6 order by 1;
NAME
                         HI HI POS
Aden
                       7.16 None
                       6.79 Tail
Alex
Ben
                       6.19 Head
Daniel
                       6.32 Head
David
                       6.03 Head
Ethan
                       6.38 Tail
Henry
                       6.56 None
Jack
                       6.67 Tail
                       6.14 Tail
James
John
                       6.51 Tail
                       6.49 Tail
Joseph
Julian
                       6.42 Tail
. . .
```

```
SQL> select name,
            max(distance) as hi,
  3
            any_value(wind) keep ( dense_rank last order by distance ) as hi_pos
     from long jump
  5 group by name
  6 order by 1;
NAME
                         HI HI POS
Aden
                       7.16 None
                       6.79 Tail
Alex
Ben
                       6.19 Head
Daniel
                       6.32 Head
David
                       6.03 Head
Ethan
                       6.38 Tail
Henry
                       6.56 None
Jack
                       6.67 Tail
                       6.14 Tail
James
John
                       6.51 Tail
                       6.49 Tail
Joseph
Julian
                       6.42 Tail
. . .
```

as requirements get more complex ...

... SQL gets more complex

"Find the average distance jumped by each boy, then with the median of these results, list those players who got above the median"

SQL?

common table expressions

WITH clause


```
select jump, avg(distance)
from long_jump
group by jump
;
```

"Who cares?... more code, same result"

great mental model for developers

relational is a rigorous model ...

relational is the dominant model ...

relational ...

not our fault ©

"data is represented as mathematical n-ary relations, an n-ary relation being a subset of the Cartesian product of n domains."

HUH ?

procedural approach to relational

step by step


```
SQL> with
2  jump_avg as (
3   select name, avg(distance) avg_per_jump
4   from long_jump
5   group by name
6 ),
```

"Find the average distance jumped by each boy...

```
7 median_jump as
8 (select median(avg_per_jump) median_jump
9 from jump_avg
10 )
```

"then with the median of these results...

```
11  select *
12  from jump_avg,
13         median_jump
14  where avg_per_jump > median_jump
15  order by 1;
```

"list those players who got above the median"

```
SQL> with
 2 jump avg as (
      select name, avg(distance) avg per jump
   from long jump
 4
 5 group by name
 6),
 7 median jump as
 8 (select median (avg per jump) median jump
 9
   from jump avg
10
11
   select *
12 from jump avg,
13 median jump
14 where avg per jump > median jump
    order by \overline{1};
15
              AVG PER JUMP MEDIAN JUMP
NAME
                      6.89 6.15
Aden
Alex
                      6.33 6.15
                      6.23 6.15
Ethan
```

programmer's approach....

... relational solution

great for code reuse

modern apps need JSON

recall partitioned outer join


```
select qtr, player, pts
from
  ( select quarter, player, sum(points) pts
    from basketball
    group by quarter, player ) b
partition by (b. [
right outer join
                   {"Campbell":9},
  ( select rownu
                   {"Zack":6},
on (q.qtr = b.q
                   {"Will":4},
                   {"Rory":3},
                   {"Robbie":11},
                   {"Max":6},
                   { "Matt":1}
```


Some "me" time


```
SQL> select *
```

- 2 from swimming
- 3 order by sess,lap;

SESS	LAP	ELA
12-JUL-22	1	58.7
12-JUL-22	2	59.7
12-JUL-22	3	60.3
12-JUL-22	4	61.3
12-JUL-22	5	60.7
12-JUL-22	6	59.7
12-JUL-22	7	60.2
12-JUL-22	8	58.6
12-JUL-22	9	59.6
12-JUL-22	10	59.9
12-JUL-22	11	60.4
12-JUL-22	12	60.1

SQL> select avg(ela) from swimming;

AVG (ELA)

59.93

"How often am I 'on track'?"

moving average every 3 laps


```
SQL> select
     s.*,
      avg(ela) over ( partition by sess order by lap
                      range between 1 preceding and 1 following
 5
                     as mov avq
    from swimming s;
SESS
                LAP
                           ELA MOV AVG
12-JUL-22
                          58.7
                                  59.2
12-JUL-22
                          59.7
                                  59.6
12-JUL-22
                          60.3
                                 60.4
12-JUL-22
                          61.3
                                  60.8
12-JUL-22
                          60.7
                                 60.6
12-JUL-22
                          59.7
                                  60.2
12-JUL-22
                          60.2
                                  59.5
12-JUL-22
                  8
                          58.6
                                  59.5
12-JUL-22
                          59.6
                                  59.4
12-JUL-22
                 10
                          59.9
                                  60.0
12-JUL-22
                 11
                          60.4
                                  60.1
                          60.1
12-JUL-22
                 12
                                  60.3
```

```
SQL> select
     s.*,
      avg(ela) over ( partition by sess order by lap
                      range between 1 preceding and 1 following
 5
                     as mov avq
    from swimming s;
SESS
                LAP
                           ELA MOV AVG
12-JUL-22
                          58.7
                                  59.2
12-JUL-22
                          59.7
                                  59.6
12-JUL-22
                          60.3
                                 60.4
12-JUL-22
                          61.3
                                  60.8
12-JUL-22
                          60.7
                                 60.6
12-JUL-22
                          59.7
                                  60.2
12-JUL-22
                          60.2
                                  59.5
12-JUL-22
                  8
                          58.6
                                  59.5
12-JUL-22
                          59.6
                                  59.4
12-JUL-22
                 10
                          59.9
                                  60.0
12-JUL-22
                 11
                          60.4
                                  60.1
                          60.1
12-JUL-22
                 12
                                  60.3
```

```
SQL> select
     s.*,
      avg(ela) over ( partition by sess order by lap
                      range between 1 preceding and 1 following
 5
                     as mov avq
    from swimming s;
SESS
                LAP
                           ELA MOV AVG
12-JUL-22
                          58.7
                                  59.2
12-JUL-22
                          59.7
                                  59.6
12-JUL-22
                          60.3
                                  60.4
12-JUL-22
                          61.3
                                  60.8
12-JUL-22
                          60.7
                                  60.6
12-JUL-22
                          59.7
                                  60.2
12-JUL-22
                          60.2
                                  59.5
12-JUL-22
                  8
                          58.6
                                  59.5
12-JUL-22
                          59.6
                                  59.4
12-JUL-22
                 10
                          59.9
                                  60.0
12-JUL-22
                 11
                          60.4
                                  60.1
                          60.1
12-JUL-22
                 12
                                  60.3
```

SESS	LAP	ELA	MOV_AVG
12-JUL-22	1	58.7	59.2
12-JUL-22	2	59.7	59.6
12-JUL-22	3	60.3	60.4
12-JUL-22	4	61.3	60.8
12-JUL-22	5	60.7	60.6
12-JUL-22	6	59.7	60.2
12-JUL-22	7	60.2	59.5
12-JUL-22	8	58.6	59.5
12-JUL-22	9	59.6	59.4
12-JUL-22	10	59.9	60.0
12-JUL-22	11	60.4	60.1
12-JUL-22	12	60.1	60.3

"want the tempo to be 60 seconds"

SQL> select *

- 2 from swimming
- 3 order by sess,lap;

	SESS	LAP	ELA	
				-1.3
	12-JUL-22	1	58.7	-0.3
60	12-JUL-22	2	59.7	+0.2
00	12-JUL-22	3	60.2	+1.4
	12-JUL-22	4	61.4	
	12-JUL-22	5	60.7	0.0
	12-JUL-22	6	59.7	0.0
	12-JUL-22	7	60.2	
	12-JUL-22	8	58.6	
	12-JUL-22	9	59.6	
$C \cap$	12-JUL-22	10	59.9	
DU	12-JUL-22	11	60.4	
	12-JUL-22	12	60.1	

```
SQL> alter table swimming add delta number(5,2)
   2   generated always as ( ela - 60 );
Table altered.

SQL> alter table swimming modify delta invisible;
Table altered.
```

```
SQL> select s.*,
2    sum(delta) over ( order by lap ) as run_tot
3    from    swimming s
4    order by sess, lap;
```

SESS	LAP	ELA	DELTA	RUN_TOT	
12-JUL-22	1	58.7	-1.3	-1.3	"Bad"
12-JUL-22	2	59.7	3	-1.6	"Bad"
12-JUL-22	3	60.3	.3	-1.3	"Bad"
12-JUL-22	4	61.3	1.3	0	"Zero" ©
12-JUL-22	5	60.7	.7	.7	
12-JUL-22	6	59.7	3	. 4	
12-JUL-22	7	60.2	.2	. 6	

pattern

bad_lap* zero

zero as sum(delta) = 0


```
SQL> select * from swimming
   match recognize (
     partition by sess order by lap
     measures classifier() pattern, sum(delta) as run tot
     all rows per match
   pattern (bad lap* zero)
 7 define zero as sum(delta) = 0
 9 );
SESS
            LAP PATTERN
                                   RUN TOT
                                               ELA
-1.3 58.7
12-JUL-22 2 BAD LAP
                                      -1.6
                                              59.7
12-JUL-22
           3 BAD LAP
                                      -1.3 60.3
         4 ZERO
12-JUL-22
                                           61.3
12-JUL-22 9 BAD LAP
                                              59.6
                                      -.4
12-JUL-22
              10 BAD LAP
                                              59.9
                                      -.5
              11 BAD LAP
                                              60.4
12-JUL-22
                                      -.1
12-JUL-22
              12 ZERO
                                              60.1
```

did you miss it?

SQL> select *

- 2 from swimming
- 3 order by sess,lap;

SESS	LAP	ELA	
12-JUL-22	1	58.7	
12-JUL-22	2	59.7	
12-JUL-22	3	60.3	
12-JUL-22	4	61.3	
12-JUL-22	5	60.7	
12-JUL-22	6	59.7	60
12-JUL-22	7	60.2	OO
12-JUL-22	8	58.6	
12-JUL-22	9	59.6	
12-JUL-22	10	59.9	
12-JUL-22	11	60.4	
12-JUL-22	12	60.1	


```
SQL> select * from swimming
   match recognize (
    partition by sess order by lap
 3
    measures classifier() pattern, sum(delta) as run tot
 4
 5
    all rows per match
    after match skip to next row
    pattern (bad lap* zero)
    define zero as sum(delta) = 0
 9
   );
SESS LAP PATTERN RUN TOT
                                   ELA
12-JU
12-JUL-22 2 BAD_LAP

  -.3
  59.7

12-JU<sub>12</sub>-JUL-22 3 BAD_LAP
                        0 60.3
12-JU<sub>12-JUL-22</sub> 4 BAD_LAP
                        1.3
                                      61.3
    12-JUL
   12-JUL 12-JUL-22 4 BAD_LAP
                                   1.3
                                            61.3
   12-JUL-22 5 BAD_LAP
                                   2
                                            60.7
    12-JUL-22 6 BAD_LAP
                                   1.7
                                            59.7
    12-JUL 12-JUL-22
                  7 RAN TAR
                                            60 2
   12-JUL<sub>12</sub>-JUL-22
                  12-JUL-22 9 BAD LAP -.4
                                                     59.6
         12-JUL-22
                  59.9
         12-JUL-22
                  12-JUL-22 11 BAD LAP
                                          -,1
                                                     60.4
                            12 ZERO
                  12-JUL-22
                                               0
                                                     60.1
```


Boys need feeding!

"Divide the shopping equally into 4 bags"

SQL> select * from shopping;

ITEM	WEIGHT
milk	1000
bread	650
dogfood	490
biscuits	250
soda	1500
gin	2100
apples	900
bananas	1200
carrots	650
steak	550
icecream	1240
butter	450
honey	370
vegemite	540
ketchup	290
eggs	800
detergent	950
deodrant	220

SQL> select * from shopping;

ITEM	WEIGHT
milk	1000
bread	650
dogfood	490
biscuits	250
soda	1500
gin	2100
apples	900
bananas	1200
carrots	650
steak	550
icecream	1240
butter	450
honey	370
vegemite	540
ketchup	290
eggs	800
detergent	950
deodrant	220

SQL can do this too!

I have 4 bags

(matching my as yet unknown rules) use this bag if ... (bag1|bag2|bag3|bag4) *) pattern first item in the bag, or define bag1 as count(bag1.*) = 1 or sum(bag1.weight) -bag1.weight , bag2 as count(bag2.*) = 1 or sum (bag2.weight) -bag2.weight <= least(sum(bag3.weight), sum(bag4.weight))</pre> , bag3 as count(bag3.*) = 1 or sum (bag3.weight) -bag3.weight my bag (before this item) has <= sum(bag4.weight) less then the other bags

```
SQL> select *
     from shopping
  3
     match recognize (
  4
      order by weight desc
  5
      measures
  6
         classifier() bag#,
         sum(bag1.weight) bag1,
  8
         sum(bag2.weight) bag2,
         sum(bag3.weight) bag3,
 10
         sum(bag4.weight) bag4
11
     all rows per match
 12
     pattern ( (bag1|bag2|bag3|bag4)* )
13
     define
 14
        bag1 as count(bag1.*) = 1 or
15
          sum(bag1.weight) -bag1.weight <=</pre>
16
              least(sum(bag2.weight), sum(bag3.weight), sum(bag4.weight))
      , bag2 as count(bag2.*) = 1 or
17
18
          sum(bag2.weight) -bag2.weight <=</pre>
19
              least(sum(bag3.weight), sum(bag4.weight))
20
      , bag3 as count(bag3.*) = 1 or
21
          sum(bag3.weight) -bag3.weight <= sum(bag4.weight)</pre>
22
     );
```

WEIGHT	BAG#	BAG1	BAG2	BAG3	BAG4	ITEM
2100	BAG1	2100				gin
1500	BAG2	2100	1500			soda
1240	BAG3	2100	1500	1240		icecream
1200	BAG4	2100	1500	1240	1200	bananas
1000	BAG4	2100	1500	1240	2200	milk
950	BAG3	2100	1500	2190	2200	detergent
900	BAG2	2100	2400	2190	2200	apples
800	BAG1	2900	2400	2190	2200	eggs
650	BAG3	2900	2400	2840	2200	carrots
650	BAG4	2900	2400	2840	2850	bread
550	BAG2	2900	2950	2840	2850	steak
540	BAG3	2900	2950	3380	2850	vegemite
490	BAG4	2900	2950	3380	3340	dogfood
450	BAG1	3350	2950	3380	3340	butter
370	BAG2	3350	3320	3380	3340	honey
290	BAG2	3350	3610	3380	3340	ketchup
250	BAG4	3350	3610	3380	3590	biscuits
220	BAG1	3570	3610	3380	3590	deodrant

```
SQL> with portions as
  2
  3
      select *
  4
      from shopping
  5
      match recognize (
        order by weight desc
        measures
 25
 26
      BAG#
                                                                  KG
              ITEMS
 27
 28
      BAG1
              butter, deodrant, eggs, gin
                                                                3.57
 29
              apples, honey, ketchup, soda, steak
      BAG2
                                                                3.61
 30
              carrots, detergent, icecream, vegemite
                                                                3.38
      BAG3
 31
              bananas, biscuits, bread, dogfood, milk
      BAG4
                                                                3.59
```

"You said the code would be easy!"

"But I have 3 bags not 4 bags!"

"But I buy hardware not food!"

SQL macros

SQL ... that writes/changes SQL!

```
SQL> create or replace
    function pack and carry(p tab dbms tf.table t, p bags int)
        return clob sql macro is
      l sql clob;
      1 bag varchar2(1000);
 6
      1 sum varchar2(4000);
      1 pattern varchar2(4000);
 8 begin
     for i in 1 .. p bags loop
       l bag := l bag || 'bag'||i||'|;
10
11
       1 sum := 1 sum || replace('sum(bag@.weight) bag@,','@',i)||chr(10);
12
       if i 
13
         if i < p bags-1 then
14
           l pattern := l pattern ||
15
           replace(',bag@ as count(bag@.*)=1 or sum(bag@.weight)-bag@.weight <= least(','@',i);
16
         else
17
        l pattern := l pattern ||
18
           replace(',bag@ as count(bag@.*)=1 or sum(bag@.weight)-bag@.weight <= ','@',i);
19
         end if;
20
         for j in i+1 .. p bags loop
           l pattern := l pattern ||replace('sum(bag@.weight),','@',j);
21
22
         end loop;
         1 pattern := rtrim(l_pattern,',')||')'||chr(10);
23
24
       end if;
25
     end loop;
```

```
SQL> create or replace
    function pack and carry(p tab dbms tf.table t, p bags int)
        return clob sql macro is
      l sql clob;
      1 bag varchar2(1000);
      1 sum varchar2(4000);
 6
      1 pattern varchar2(4000);
 8 begin
     for i in 1 .. p bags loop
       l bag := l bag || 'bag'||i||'|;
10
11
       1 sum := 1 sum || replace('sum(bag@.weight) bag@,','@',i)||chr(10);
12
       if i 
13
         if i < p bags-1 then
14
           l pattern := l pattern ||
15
           replace(',bag@ as count(bag@.*)=1 or sum(bag@.weight)-bag@.weight <= least(','@',i);
16
         else
17
        l pattern := l pattern ||
18
           replace(',bag@ as count(bag@.*)=1 or sum(bag@.weight)-bag@.weight <= ','@',i);
19
         end if;
20
         for j in i+1 .. p bags loop
21
           l pattern := l pattern ||replace('sum(bag@.weight),','@',j);
22
         end loop;
         1 pattern := rtrim(l_pattern,',')||')'||chr(10);
23
24
       end if;
25
     end loop;
```

```
26 l sql := q'{
   select * from p tab
27
28
   match recognize (
29
   order by weight desc
30
    measures
31
      classifier() bag#,
32
      ~~~
33 all rows per match
34
  pattern ( (###)* )
35
   define $$$}';
36
l_sql := replace(l_sql,'~~~',rtrim(l_sum,','||chr(10)));
38
    l_sql := replace(l_sql,'$$$',ltrim(l_pattern,','));
39
40
     return 1 sql;
41
   end;
42 /
```

Function created.

```
SQL> select
      bag#,
      listagg(item,',') within group (order by item) as items,
      sum(weight)/1000 kg
  4
     from pack and carry (shopping, 4)
    group by bag#;
      SQL> select
BAG#
             bag#,
             listagg(item,',') within group (order by item) as items,
BAG1
             SQL> select
BAG2
           fro
                 2
                    bag#,
BAG3
           gro
                 3 listagg(item,',') within group ( order by item ) as items,
BAG4
                 4 sum(weight)/1000 kg
       BAG#
                 5 from pack and carry (hardware, 5)
                 6 group by bag#;
       BAG1
       BAG2
               BAG#
                      ITEMS
                                                                                 KG
       BAG3
               BAG1
                      chainsaw
                                                                                 12
               BAG2
                      powerwasher
               BAG3
                      hacksaw, tap, transformer, vice
                                                                               8.95
               BAG4
                      bucket,hammer,rake,screwdriver,shovel,wood
               BAG5
                      broom, chisel, drill, padlock, paint, sink
```


weekend is over &

"Refuel on the discount days \$\$\$"

```
SQL> select *
   2 from car_fuel;
```

DTE	PCTFULL	LITRES
01-AUG-21	0	45
09-AUG-21	20	37
13-AUG-21	60	22
21-AUG-21	20	20
26-AUG-21	5	60
03-SEP-21	15	32
11-SEP-21	80	15
15-SEP-21	60	20

"Clean fuel"


```
SQL> select *
   2 from car_fuel;
```

DTE	PCTFULL	LITRES	DIRT	
01-AUG-21	0	45	2.25	
09-AUG-21	20	37	2.6	
13-AUG-21	60	22		
21-AUG-21	20	20		
26-AUG-21	5	60		
03-SEP-21	15	32		
11-SEP-21	80	15		
15-SEP-21	60	20		

recursion in SQL


```
SQL> select
       car fuel.*,
       row number() over (order by dte ) as seq
     from car fuel;
              PCTFULL
                           LITRES
DTE
01-AUG-21
                               45
09-AUG-21
                   20
                               37
13-AUG-21
                   60
                               22
21-AUG-21
                   20
                               20
26-AUG-21
                               60
03-SEP-21
                   15
                               32
11-SEP-21
                   80
                               15
15-SEP-21
                   60
                               20
```

```
SQL> with t as
 2
     ( select
        car fuel.*,
        row number() over (order by dte ) as seq
 5
      from car fuel
  6
  7
    results (dte, pctfull, litres, dirt, seq) as
 8
  9
       select dte, pctfull, litres, litres*0.05 dirt, seq
10
       from t
11
      where seq = 1
12
     union all
13
      select t.dte, t.pctfull, t.litres,
14
              results.dirt * t.pctfull/60 + t.litres*0.05 , t.seq
15
      from t, results
16
      where t.seq - 1 = results.seq
17
18
    select * from results
 19
    order by seq;
```

DTE	PCTFULL	LITRES	DIRT
01-AUG-21	0	45	2.25
09-AUG-21	20	37	2.6
13-AUG-21	60	22	3.7
21-AUG-21	20	20	2.23333333
26-AUG-21	5	60	3.18611111
03-SEP-21	15	32	2.39652778
11-SEP-21	80	15	3.94537037
15-SEP-21	60	20	4.94537037

"But I like Excel formulas" (3)

cell formula expressions in SQL

```
SQL> select dte, pctfull, litres, dirt
     from car fuel
  3
     model
     dimension by (row number() over(order by dte) seq )
     measures( dte, pctfull, litres, 0 dirt )
  5
  6
        rules (
           dirt[any] order by seq =
  8
               presentnnv(dirt[cv()-1],dirt[cv()-1],0) *
               pctfull[cv()]/60 +
  9
 10
               litres[cv()]*0.05
 11
               );
           PCTFULL LITRES
   ATE
                              DIRT
                              2.25 =LITRES * 0.05
    1-Aug-21
                    45
    9-Aug-21
                               2.5 =PREV(DIRT)*PCTFULL/60 + LITRES * 0.05
               20
                    37
   l3-Aug-21
               60
                    22
               20
   21-Aug-21
                    20
                       2.233333333
   26-Aug-21
                    60 3.186111111
```

```
SQL> select dte, pctfull, litres, dirt
    from car fuel
 2
 3
    model
    dimension by ( row number() over (order by dte) seq )
 5
    measures( 0 dirt, pctfull, litres, dte )
  6
      rules (
         dirt[any] order by seq =
 8
            pre DTE
                            PCTFULL
                                       LITRES
                                                    DIRT
  9
10
            lit 01-AUG-21
                                            45
                                                    2.25
11
            );
               09-AUG-21
                             20
                                           37
                                                    2.6
                                           22
               13-AUG-21
                             60
                                                     3.7
               21-AUG-21
                                           20 2.23333333
                                 20
               26-AUG-21
                                            60 3.18611111
               03-SEP-21
                                 15
                                           32 2.39652778
               11-SEP-21
                                 80
                                          15 3.94537037
               15-SEP-21
                                 60
                                           20 4.94537037
```

wrap up

Ifitelligetint SQL

- grouping sets
- row_number() + analytics
- hypothetical analytics
- partitioned outer join
- WITH clause
- KEEP clause
- MODEL clause
- recursive WITH
- MATCH_RECOGNIZE
- SQL Macros

24 years

24 years

24 years

21 years

21 years

21 years

19 years

13 years

8 years

3 years

robust, cool, powerful

less code

faster, scalable apps

never too early to start

Son #1 @

Stay in touch!

@connor_mc_d

https://linktr.ee/connor

